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Today...

Model regression
Outlier-robust model regression (outliers)
RANSAC algorithm for model regression
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What do we model in this course?

An explicit object model (circle, line, ellipse)...

A transformation between two objects
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Application example: building a panorama

Image: Kai Herng Loh
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Application example: segment detection

Image: Grompone von Gioi et al., IPOL, 2012, http://www.ipol.im/pub/art/2012/gjmr-lsd/
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Toy example

Let (pi )i=1···N be points detected as belonging to a line in an image.

We want to find the equations for these lines expressed as: a · x +b · y + c = 0
In the ideal case where all points lie exactly on the line, one needs to find
a, b, c such that:

∀i ∈ {1 · · ·N} a · xi + b · yi + c = 0

Ideal case: 2 points (p1, p2) are enough to solve this problem.

However, in practice...
We always have points that are not exactly on the line. One must find the line
that best fits the points.
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An example: polynomial regression

Exercise: Interpolation case
Find the parameters (a, b, c) of a parabola y = ax2 + bx + c passing through:
(−1, 1), (0,−1), (2, 7)

How would you set up the problem of a polynomial interpolation of degree n?
If the points are not exactly such that f (xi ) = yi but rather such that
yi = f (xi ) + εi (where εi is a noise).
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Practical case (In 2D)

Find a line L minimizing the distance from points pi (xi , yi ) to L

L is given by the equation ax + by + c = 0
The distance from the points to the line writes |ax + by + c | if a2 + b2 = 1
A way to find the line equation is to solve for:

min
a,b,c

n∑
i=1

(axi + byi + c)2 s.t. a2 + b2 = 1
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Regression problem formulation

Choice of a model
Let n variables (Xi )i=1···n that model a variable Y through an unknown process
Y = F(X1, · · · ,Xn). Let Fθ be a model that depends on a parameter θ ∈ Θ. We
look for the value of θ that makes Fθ(X1, · · · ,Xn) close to Y :

min
θ∈Θ

∥Y −Fθ(X1, . . . ,Xn)∥

What is a model?

How do we find the optimal θ?
How do we measure the distance between Y and the prediction?
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Classical example: least squares regression line

Exercise
Find the line given by parameters θ = (a, b, c) such that:

min
a,b,c

∑
i=1

(axi + byi + c)2 s.t. a2 + b2 = 1

Regression, weighted regression, Least Squares 12/61



In general

Different minimization problems

min
∥u∥=1

∑
i

uT xi

min
∥u∥

∥Mu − b∥2

...

Regression, weighted regression, Least Squares 13/61



A very common regression case

Solving a least squares problem
Let M ∈ Rm,n, b ∈ Rm, we look for u ∈ Rn such that Mu = b. If m > n, we relax
the system as:

min
u∈Rn

∥Mu − b∥2
2

∥Mu − b∥2
2 = uTMTMu − 2uTMTb + bTb

Zeroing the gradient: 2MTMu − 2MTb = 0 and (MTM) · u = MTb (Normal
Equation)
If MTM can be inverted: u = (MTM)−1MTb

Regression, weighted regression, Least Squares 14/61
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Modeling a transform between two objects

Problem setting
Let (pi , qi ) be R2 points such that pi is paired to point qi , we look for the
transform T among a family of transforms T such that:

min
T∈T

∑
i=1···n

∥qi − T (pi )∥

It is still a model choice for pi to explain qi .
We need to choose a norm.
Transforms can be rotations, translations, or an affinity ...

Regression, weighted regression, Least Squares 15/61



Rigid transform estimation example

Exercise
Let (pi , qi )i=1···n n pairs of matched points in R2, we are looking for a rigid
transform (A, b) such that qi ≈ Api + b (A ∈ R2,2, b ∈ R2).

Objective function to minimize:
∑n

i=1 ∥qi − Api − b∥2
2

Differentiation w.r.t. b:
n∑

i=1

2Api + 2b − 2qi = 0

Differentiation w.r.t. A?
Differentiation formulas with respect to a vector or a matrix: http://www2.imm.
dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf

Regression, weighted regression, Least Squares 16/61
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Image example

Image: Justin Solomon
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Generalization

Problem
(yi ) ∈ Rn, (xi ) ∈ Rm, Find A ∈ Rn×m minimizing:

n∑
i=1

∥yi − Axi∥2
2 = ∥Y − AX∥2

F

with Y =
(
y1 y2 · · · yp

)
and X =

(
x1 x2 · · · xp

)
(the first norm is the

ℓ2norm, the second norm is the Frobenius norm)

Regression, weighted regression, Least Squares 18/61



Regularization

Regularization
Adding a regularization term permits to favor some solutions for which the
problem might be easier to solve.

Tikhonov Regularization: min ∥y − Ax∥2
2 + λ∥x∥2

L0 Regularization: min ∥y − Ax∥2
2 + λ∥x∥0

L1 Regularization: min ∥y − Ax∥2
2 + λ∥x∥1
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Outline

1 Regression, weighted regression, Least Squares

2 Rotation estimation in 2D and 3D

3 Norms

4 RANSAC
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Estimating a rotation

2D: A point and an angle: unitary complex number.
3D: An axis and an angle:

Unitary quaternion
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Estimating a rotation in 3D: Quaternions

Can be seen as a generalization of the complex numbers to higher dimension.
q̇ = q0 + q1i + q2j + q3k
Conjugate of a quaternion q̇∗ = q0 − q1i − q2j − q3k
Unitary quaternion ∥q̇∥2 = q̇ · q̇∗ = 1
A rotation of axis (wx ,wy ,wz) and angle θ can be seen as the quaternion:

cos
θ

2
+ sin

θ

2
(wx i + wy j + wzk)

Rotation estimation in 2D and 3D 22/61



Manipulating quaternions as matrices

Vector in space correspond to imaginary quaternions (q0 = 0)
Advantage: easier to work with than rotation matrices
The translation can be deduced [Horn 87]

Rotation estimation in 2D and 3D 23/61



Better: rotation estimation using SVD (Procrustes problem)

Let P = (pi )i=1···n and Q = (qi )i=1···n such that (pi , qi ) is a matched pair.
Goal: Find R, t minimizing

F (R,T ) =
n∑

i=1

∥Rpi + T − qi∥2
2.

1 Centering p̃i = pi − 1
n

∑n
i=1 pi ; q̃i = qi − 1

n

∑n
i=1 qi .

2 Compute M = P · QT and its svd M = USV T

3 Compute

R = V


1

1
. . .

1
det(VUT )

UT

4 ... and

T =
1
n

n∑
i=1

qi − R(
1
n

n∑
i=1

pi )

Rotation estimation in 2D and 3D 24/61



Outline

1 Regression, weighted regression, Least Squares

2 Rotation estimation in 2D and 3D

3 Norms

4 RANSAC
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A brief reminder on norms

Norm definition
Let E be a vector space over a subfield K , a norm on E is an application with
nonnegative values ∥∥ : E → R such that for all α ∈ K and u, v ∈ E :

∥αv∥ = |α|∥v∥ (positive homogeneity)
∥u + v∥ ≤ ∥u∥+ ∥v∥ (subadditivity)
∥u∥ = 0K ⇔ u = 0E (separation)

The ℓ2 norm is also called the euclidean norm. Let x be a vector in Rn with
coordinates (x1, · · · , xn) in the canonical basis, the ℓ2 norm writes:

∥x∥2 =
√
x · xT = (

n∑
i=1

x2
i )

1
2
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Norm Examples on vectors of Rn

ℓ1 Norm (Manhattan)

∥x∥1 = (
n∑

i=1

|xi |)

ℓ3

∥x∥3 = (
n∑

i=1

|xi |3)
1
3

ℓ2.1:

∥x∥2.1 = (
n∑

i=1

x2.1
i )

1
2.1

ℓp pour p ≥ 1

∥x∥p = (
n∑

i=1

|xi |p)
1
p

ℓ∞

∥x∥∞ = max
i=1···n

|xi |

Exercice: Prove that ℓ∞ is indeed a norm?
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The ball of radius 1 for norms ℓp with p ≥ 2
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The ball of radius 1 for norms ℓp with p ≥ 2
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The ball of radius 1 for norms ℓp with p ≥ 2
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The ball of radius 1 for norms ℓp with p ≤ 2
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The ball of radius 1 for norms ℓp with p ≤ 2
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The ball of radius 1 for norms ℓp with p ≤ 2
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The ball of radius 1 for norms ℓp with p ≤ 2
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The ball of radius 1 with norms and quasi-norms ℓp
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Norm and sparsity

Sparsity definition
A vector x ∈ RN is said to be s-sparse if at most s of its entries are non zero, i.e.

card support(x) ≤ s

where support(x) = {i |xi ̸= 0}.
We note ∥x∥0 = card support(x) and call it ℓ0.

Is ℓ0 a norm?
∥x∥0 is the limit of ∥x∥pp for p → 0

Optimization with L0 constraints: nonconvex problems ⇒ very hard to solve!
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L1 regression

Least Absolute Deviation
Let (xi , yi ) be points of R2. We look for θ minimizing:

n∑
i=1

|fθ(xi )− yi |
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Example
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L1 vs L2

L2
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L1 vs L2

L1
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L1 vs L2

L1 (red) and L2 (black)
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With outliers

A single outlier
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With outliers

L2
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With outliers

L1
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With outliers

L1 (red) and L2 (black)
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L1 vs L2

L1 norm L2 norm

Robust to outliers

Non differentiable, instable
sparsity inducing
slow optimization

Very sensitive to outliers
Easy to optimize
No penalty for vectors with
small nonzero coefficients
Fast!

Exemple
x =

(
0.01 0.5 1 2 0.009 0.000012

)
; y =

(
0 0 1 2 0 0

)
∥x∥1 = 3.519 ∥x∥2 = 2.2913

∥y∥1 = 3 ∥y∥2 = 2.2361
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L2: Adding a confidence value

Transform estimation setting: n pairs of matched points (pi , qi ).

Assume we can measure if the pair is trustworthy or not and encode it as fi

Let wi =
fi∑
k fk

Weighted regression

min
T∈T

∑
i=1···n

wi∥qi − T (pi )∥2
2
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L2: Adding a confidence value

∀i , fi = 1 wi =
1
N ⇒ classical Least Squares.
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L2: Adding a confidence value

fi = 1, except for the outlier: fi0 = 0.9
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L2: Adding a confidence value

fi = 1, except for the outlier: fi0 = 0.5
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L2: Adding a confidence value

fi = 1, except for the outlier: fi0 = 0.1
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Algorithm for L1 regression:

We will use weighted L2 regression to approximate a L1 regression

We do not know which points are outliers!
Iterate two steps: 1) regression and 2) weights recomputation
Iteratively Reweighted least squares (IRLS)
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Iteratively Reweighted Least Squares

Algorithm 1: IRLS
Input: Data xi , yi
Output: parameter θ of the model

1 Set wi = 1/n;
2 do
3 Find the parameter θ minimizing

∑n
i=1 wi∥fθ(xi )− yi∥2

2;
4 Update the weights wi =

1
|yi−fθ(xi )| ;

5 Until Convergence;

Pro: doable for large-scale problems.
Con: Iterative solve.
Safety: Avoid divisions by 0 in the weights update:

wi =
1

max(δ, |yi − fθ(xi )|)
where δ is small

This algorithm can be adapted for all quasi-norms ℓp with p < 1
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Iteratively Reweighted Least Squares

Algorithm 4: IRLS
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Iteratively Reweighted Least Squares

Algorithm 5: IRLS
Input: Data xi , yi
Output: parameter θ of the model
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Exact Solution: linear programming

Definition
A linear problem is a problem where the objective function and the equality or
inequality constraints are linear with respect to the variables.

Example: Minimize x + 2y + 3z s.t. x + y = 1, x − z ≤ 2, z ≥ 0
Valid if fθ(xi ) = θT · xi
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L1 regression as a linear program

Least Absolute Deviation as a linear program

Minimize
mi ,θ

∑
i

mi

s.t.∀i ,mi ≥ yi − θT · xi
and∀i ,mi ≥ −(yi − θT · xi )

Can be solved with the Simplex Algorithm.
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Outline

1 Regression, weighted regression, Least Squares

2 Rotation estimation in 2D and 3D

3 Norms

4 RANSAC
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Outliers
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Outliers
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Outliers
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Estimation of models or transforms...

Problem statement
n pairs of matched points (pi , qi ) that should be such that:

qi = T (pi )

where T is an arbitrary model that can be estimated with m pairs of points. The
goal is to find the best model T and a subset of pairs that have a consensus on
the model. This consensus subset is the set of inliers.

Transform linking two pictures of the same scene: homography H

If two points (x1, y1) in image 1 and (x2, y2) in image 2 are matched, then:x1
y1
1

 = H

x2
y2
1


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Estimating only from all pairs
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Estimating only from m random pairs
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RANSAC for model estimation

Input: n matched pairs (pi , qi ) possibly containing false matches
Repeat k times:

▶ Select m pairs and estimate T
▶ Compute the number of pairs who agree with T
▶ If this score is the highest yet, store T and the consensus set
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Estimating with RANSAC
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Why is RANSAC efficient?

T is estimated on a very small set of points (⇒ fast)

It is easy to compute the score of a transform.
We can give statistical guarantees for RANSAC
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Some guarantees for RANSAC

w = #inliers
#pairs probability to pick an inlier among the n pairs

Probability to pick at least one outlier

1 − wm

Probability to always pick an outlier among the m pairs:

(1 − wm)k

Success probability p:

1 − p = (1 − wm)k

Result

p = 0.99, w ≈ 0.99 yields k ≈ 2
p = 0.99, w ≈ 0.7 yields k ≈ 11
p = 0.99, w ≈ 0.6 yields k ≈ 19
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Conclusion

Model regression or transform estimates are found in a vast variety of image
problems.
One must choose the model, the norm and the right algorithm
Registration of images but also of 3D shapes!

Images from the "david laser scanner" website.

Conclusion 61/61


	Regression, weighted regression, Least Squares
	Rotation estimation in 2D and 3D
	Norms
	RANSAC
	Conclusion

