Modèles statistiques pour l'image Méthodes de classification

Julie Digne

LIRIS - CNRS

16/09/2024

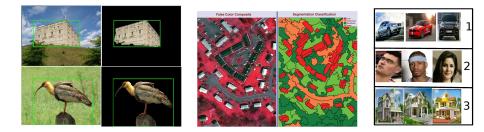
Outline

1 What is classification?

4 Support Vector Machine

What is classification?

Objects to sort out in categories

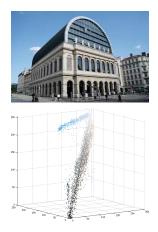


- pixels
- superpixels image patches
- Entire images

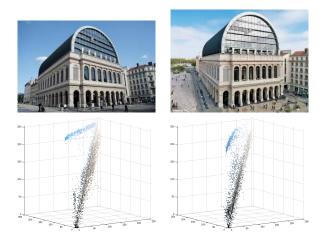
Classification Principle

- Describe the objects to classify
- Natural description for pixels: A triplet $(R, G, B) \in \mathbb{R}^3$.
- But one can be more specific!

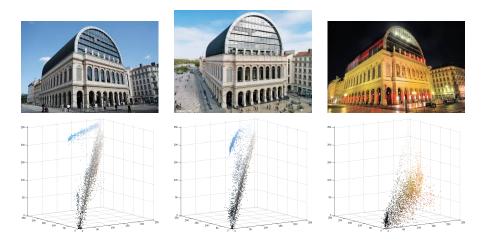
A color image in RGB



A color image in RGB



A color image in RGB



From the image domain to \mathbb{R}^d

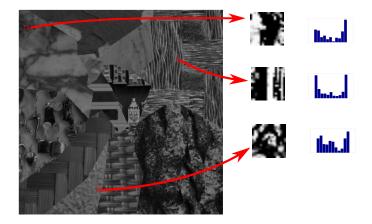
Data to classify

Recall that each pixel is representated as a vector in \mathbb{R}^d

Example: each pixel (i, j) of an image I can be encoded as:

- (i, j, r, g, b) in \mathbb{R}^5 (color image)
- $(\nabla_x I(i,j), \nabla_y I(i,j))$ in \mathbb{R}^2 (grayscale image)
- (I(i-1,j-1), I(i,j-1), I(i+1,j-1), I(i-1,j), I(i,j), I(i+1,j), I(i-1,j+1), I(i,j+1), I(i+1,j+1)) in \mathbb{R}^9 (grayscale image)

Descriptor example: local histograms



Histogram of gradient orientation

Descriptor example: response of the image to a set of filters

- Particularly well adapted for textures
- Each point is the set of responses of to a set of filters.
- Many filters have been proposed

Gabor Filter

Measures the response to an oriented and localized filter. The filter writes:

$$G_{ heta,\sigma,\lambda} = \exp{-rac{x'^2+y'^2}{2\sigma^2}\cos{2\pi\lambda}rac{x'}{\sigma}}$$

with $x' = x \cos \theta + y \sin \theta$, $y' = x \sin \theta - y \cos \theta$

Gabor Filter

Measures the response to an oriented and localized filter. The filter writes:

$$G_{ heta,\sigma,\lambda} = \exp{-rac{x'^2+y'^2}{2\sigma^2}\cos{2\pi\lambda}rac{x'}{\sigma}}$$

with
$$x' = x \cos \theta + y \sin \theta$$
, $y' = x \sin \theta - y \cos \theta$

• θ controls the filter orientation

Gabor Filter

Measures the response to an oriented and localized filter. The filter writes:

$$\mathcal{G}_{ heta,\sigma,\lambda} = \exp{-rac{x'^2+y'^2}{2\sigma^2}\cos{2\pi\lambda}rac{x'}{\sigma}}$$

with
$$x' = x \cos \theta + y \sin \theta$$
, $y' = x \sin \theta - y \cos \theta$

- θ controls the filter orientation
- $\bullet~\sigma$ controls the localization of the filter

Gabor Filter

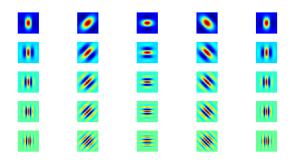
Measures the response to an oriented and localized filter. The filter writes:

$$\mathcal{G}_{ heta,\sigma,\lambda} = \exp{-rac{x'^2+y'^2}{2\sigma^2}\cos{2\pi\lambda}rac{x'}{\sigma}}$$

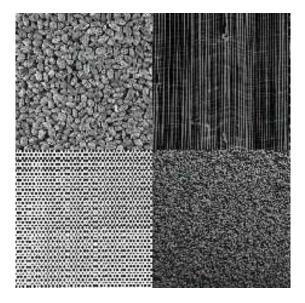
with $x' = x \cos \theta + y \sin \theta$, $y' = x \sin \theta - y \cos \theta$

- θ controls the filter orientation
- $\bullet~\sigma$ controls the localization of the filter
- λ controls the filter frequency

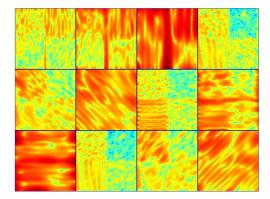
Gabor filters



Convolution by a Gabor filter



Convolution by a Gabor filter

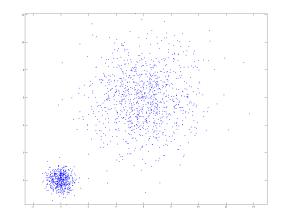


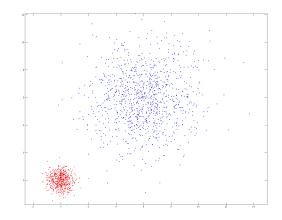
Classical segmentation algorithm

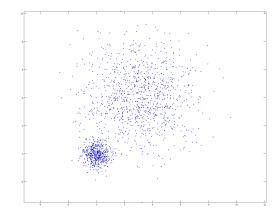
- Supervised classification / Unsupervised classification
- Data in \mathbb{R}^d but we'll visualize 2D examples only.
- Classical examples we'll look at: K-means, mean-shift, Expectation Maximization

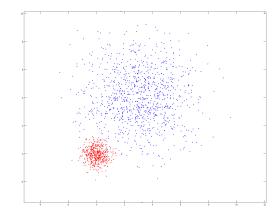
Recent advances

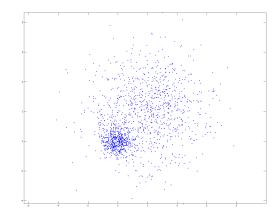
Deep Learning methods learn object descriptions (feature vectors). ImageNet Benchmark: AlexNet [Krizhevsky et al. 2012] ... [Chen et al. 2023]

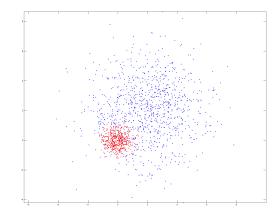












Outline

What is classification?

4 Support Vector Machine

K-means

K-Means

- Goal: Extract classes (or *clusters*) from a set of points (Group the points into clusters)
- In this algorithm a class is represented by a special element called class representative of cluster center.

K-means

Principle

Let $(x_i)_{i=1\cdots n} \in \mathbb{R}^d$ a set of *n* points, *K* a given cluster number and $(y_k)_{k=1\cdots K}$ the cluster centers, then the label k_0 of a point x_i is:

$$k_0 = \operatorname{argmin}_{k \in 1 \cdots K} \|y_k - x_i\|^2$$

• Goal: Find the cluster centers y_k AND the labels of points x_i

• If we know the cluster centers, can we compute the labels?

Algorithm

- If we know the cluster centers, can we compute the labels?
- If we know the labels, can we compute the cluster centers?

Algorithm

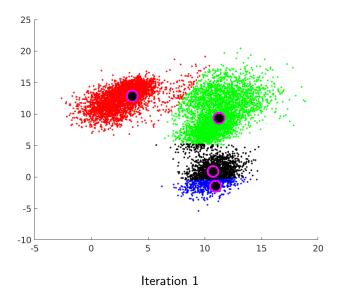
Algorithm 1: Algorithme K-Means

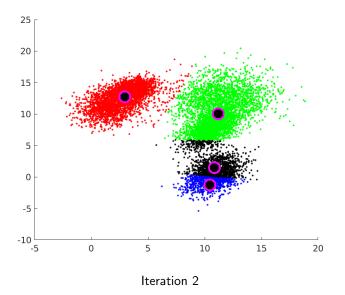
Data: $(x_i)_{i=1\cdots n} \in \mathbb{R}^d$, a number of classes K**Result:** An assignment for $(l_i)_{i=1\cdots n} \in \{1 \cdots K\}$ and representatives $(y_k)_{i=1\cdots K}$

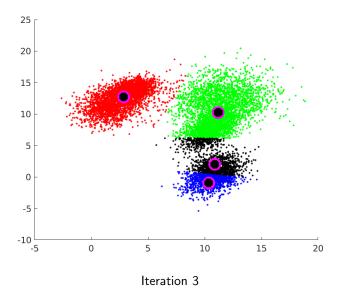
1 Start with random y_k drawn from x_i ;

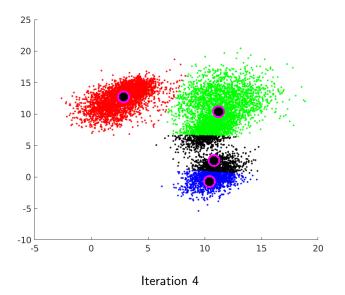
2 **do**

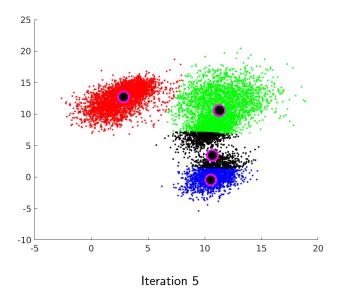
- 3 Assign to each x_i the label corresponding to its nearest y_k ;
- 4 For each k, update y_k as the barycenter of the x_i with label k;
- 5 **Until** Convergence;

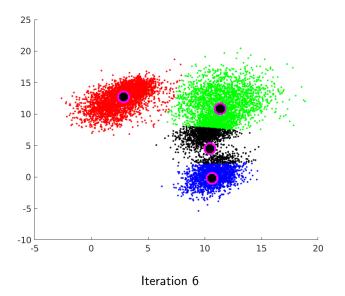


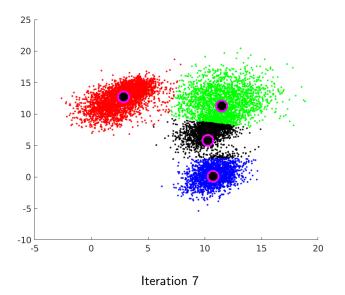


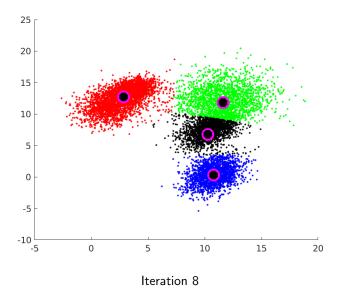


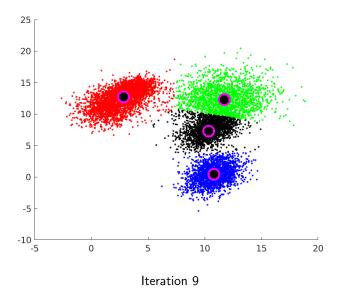






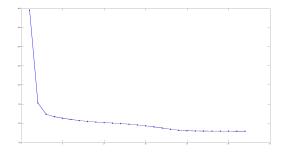




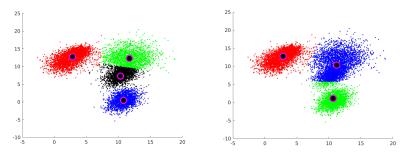


Measure the time when the clusters (or the labels) do not change

- Average motion of the cluster center is close to 0
- \bullet Better: No labeling is changed (\rightarrow the cluster center will not move at the next iteration)



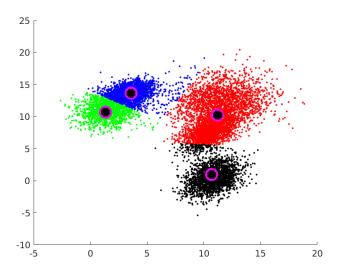
- A random choice in the set of x_i
- A random choice in the *domain* of the x_i?



Random from the set

Random in the domain

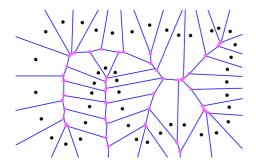
Convergence... To a local minimum



K-means

A small detour by Computational Geometry

- The Voronoi Diagram of S is a partition of space into regions V(p) (p ∈ S) such that all points in V(p) are closer to p than any other point in S.
- For a vertex, we can draw an empty circle that just touches the three points in *S* around the vertex.
- Each Voronoi vertex is in one-to-one correspondence with a Delaunay triangle



Link between K-means and the Voronoi Diagram

Voronoi Diagram

In \mathbb{R}^d using the L^2 distance, the boundary of a cell is a hyperplane.

K-means

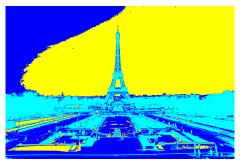
- The assignation step assigns each point to the center (seed) of their Voronoi cell.
- The positions of the seeds are then recomputed.

Color clouds

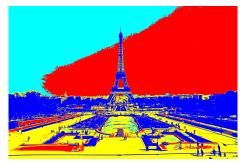
Original

Color clouds

Color clouds

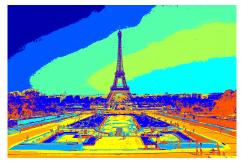


Color clouds

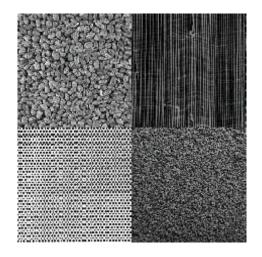


Color clouds

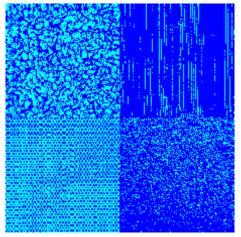
Color clouds



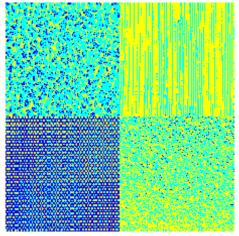
Color clouds



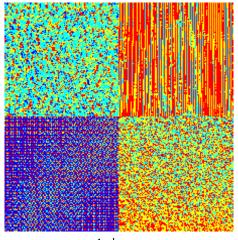
Color clouds



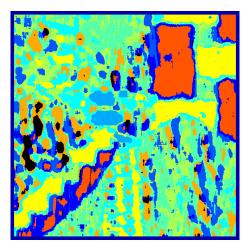
Color clouds



Color clouds



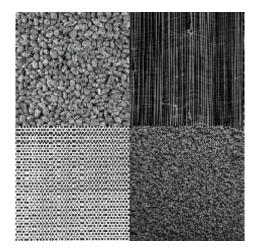
With local histograms of gradient orientations (size 16x16)



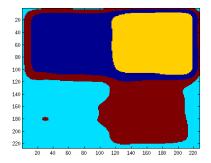
With local histograms of gradient orientations (size 32x32)



With Gabor filters



With Gabor filters



Conclusion on K-means

- It is necessary to know the number of classes K
- Strong dependency on the initialization
- Assumes that classes can be separated by an hyperplane.

Dropping the hyperplane assumption

- Embed the data in a space where the classes will be indeed separated by hyperplanes (*kernel trick*)
- Use the K-means algorithm in this space.

Outline

1 What is classification?

4 Support Vector Machine

Mean-Shift

48/75

${\sf Mean-shift}$

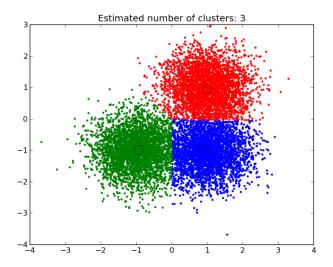


Figure: Data Example

Mean-shift

- Idea: clusters correspond to high point densities areas
- Points will evolve and be attracted towards high density areas
- When the convergence is reached we'll deduce the classification

"Particle filter"

Points are particles moving in \mathbb{R}^d

Mean-shift

Definition

Let $(x_i)_i$ be a set of observations in \mathbb{R}^d Let K be a *kernel*, an estimator of the local point density at x:

$$f(x) = \frac{1}{nh^d} \sum_{i=1}^n K(\frac{x - x_i}{h})$$

A word on kernels

A kernel K is a function defined on \mathbb{R}^d with values in \mathbb{R} iff there exists a function $k : \mathbb{R}^+ \to \mathbb{R}$ such that:

- $K(x) = k(||x||^2)$
- k is nonnegative
- k is decreasing
- k is piecewise continuous and $\int_{\mathbb{R}^+} k(x) dx < \infty$

We will assume that $\int_{x \in \mathbb{R}^d} k(x) dx = 1$, and:

 $K(x) = k(\|x\|^2)$

Kernel examples:

• Gaussian Kernel
$$K(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp{-(\frac{||x||^2}{2\sigma^2})}$$

• Flat Kernel:
$$K(x) = \mathbb{1}_{\|x\|^2 < r^2}(x)$$

- Need to solve for $\nabla f(x) = 0$:
- Let $g \equiv -k'$

Density gradient

$$\nabla f(x) = \left[\frac{2}{cnh^{d+2}} \sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right)\right] \left(\frac{\sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right) x_i}{\sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right)} - x\right)$$

• The gradient expression can be understood easily

- Need to solve for $\nabla f(x) = 0$:
- Let $g \equiv -k'$

Density gradient

$$\nabla f(x) = \left[\frac{2}{cnh^{d+2}} \sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right)\right] \left(\frac{\sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right) x_i}{\sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right)} - x\right)$$

• Module

- Need to solve for $\nabla f(x) = 0$:
- Let $g \equiv -k'$

Density gradient

$$\nabla f(x) = \left[\frac{2}{cnh^{d+2}} \sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right)\right] \left(\frac{\sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right) x_i}{\sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right)} - x\right)$$

• Weighted average of the neighbors

- Need to solve for $\nabla f(x) = 0$:
- Let $g \equiv -k'$

Density gradient

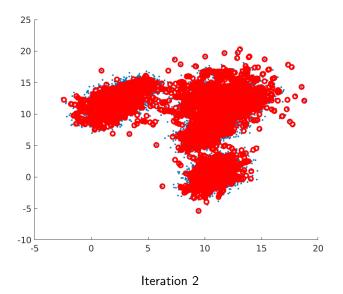
$$\nabla f(x) = \left[\frac{2}{cnh^{d+2}} \sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right)\right] \left(\frac{\sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right) x_i}{\sum_{i=1}^{n} g\left(\left(\frac{\|x - x_i\|}{h}\right)^2\right)} - x\right)$$

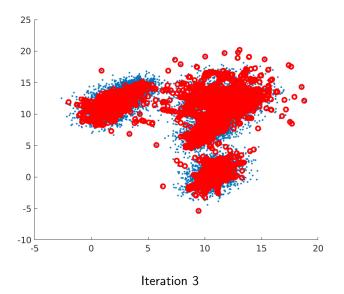
• Vector from x to the weighted average of the neighbors

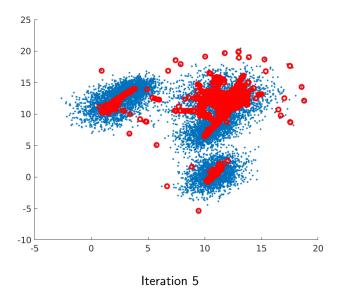
Algorithm

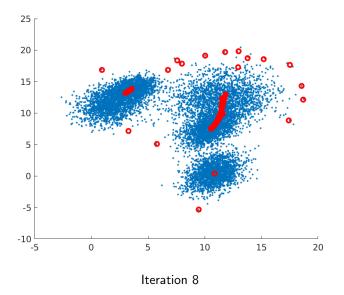
Algorithm 2: Mean-Shift

Data: A set of points x_i , kernel size h, threshold ε **Result:** A set of clusters c_i and labels l_i 1 for $i = 1 \cdots n$ do 2 $x_i^0 = x_i;$ **3** t = 0: 4 while error $> \varepsilon$ do 5 | for $i = 1 \cdots n$ do $\begin{array}{c|c} \mathbf{6} \\ \mathbf{7} \\ \mathbf{7} \\ \end{array} \begin{array}{c} \sum_{i=1}^{n} g((\frac{\|x_{j}^{t} - x_{i}\|}{h})^{2}) x_{i}}{\sum_{i=1}^{n} g((\frac{\|x_{j}^{t} - x_{i}\|}{h})^{2})}; \\ x_{j}^{t+1} = m(x_{j}^{t}); \end{array}$ 8 | error $= \frac{1}{n} \sum_{i} ||m(x_{i}^{t}) - x_{i}^{t}||;$ 9 t = t + 1;• Group x_i^T by position; 1 Assign x_i to the cluster of x_i^T ;



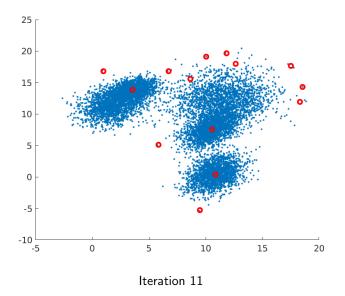


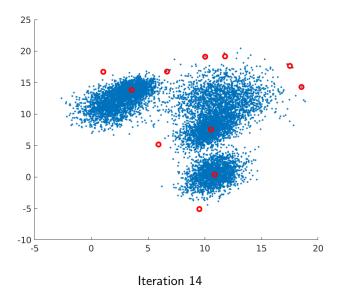


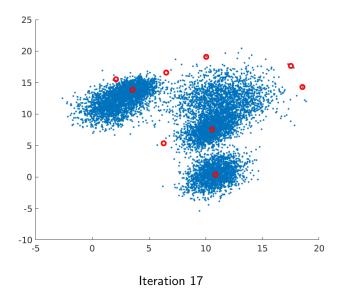


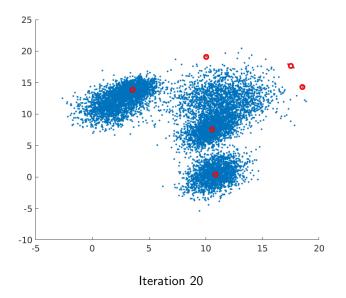
Mean-Shift

58/75









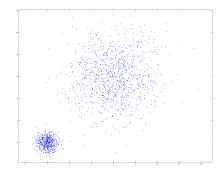
• Pro: No need to choose the number of classes

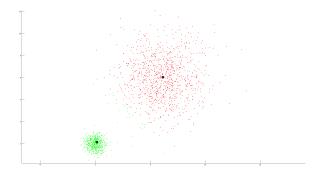
Analysis

- Pro: No need to choose the number of classes
- Pro: Guaranteed convergence to a density extrema

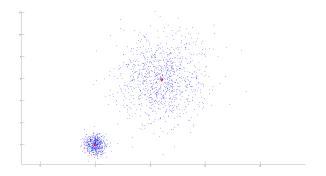
Analysis

- Pro: No need to choose the number of classes
- Pro: Guaranteed convergence to a density extrema
- Con: Needs post-filtering for small density extrema

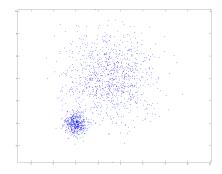


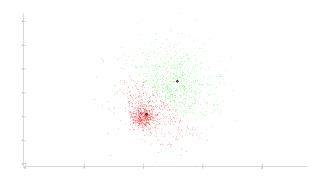


Kmeans

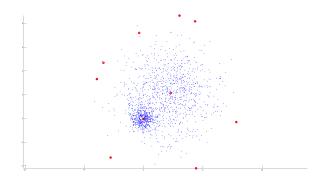


Meanshift





Kmeans



Meanshift

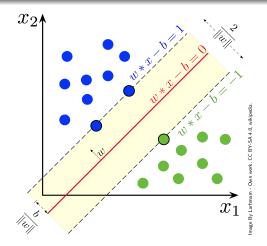
Outline

1 What is classification?

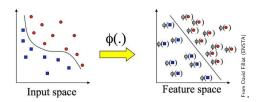
Support Vector Machine

Large margin binary classifier

Find an hyperplane separating the two classes maximizing the margin



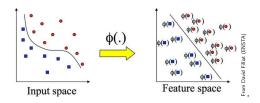
• Works well when the classes are linearly separable. What if it's not the case?



• Works well when the classes are linearly separable. What if it's not the case?

Kernel trick

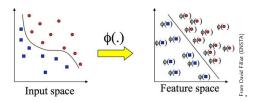
Find a function Φ such that the two classes of $(\phi(x_i), l_i)_i$ are linearly separable.



• Works well when the classes are linearly separable. What if it's not the case?

Kernel trick

Find a function Φ such that the two classes of $(\phi(x_i), l_i)_i$ are linearly separable.

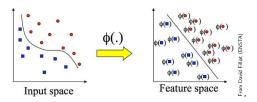


• Problem: how do we design Φ ? Manually

• Works well when the classes are linearly separable. What if it's not the case?

Kernel trick

Find a function Φ such that the two classes of $(\phi(x_i), l_i)_i$ are linearly separable.



 Problem: how do we design Φ? Manually or that's where Deep Learning methods come in handy.

Optimization

- Equation of the separating hyperplane: $w^T x + b = 0$
- If $w^T x_i + b > 0$ then $I_i = 1$, and if $w^T x_i + b < 0$ then $I_i = -1$,
- Decision function: $f(x) = sign(w^T x + b)$.

Maximal margin

Maximize the distance between hyperplanes $w^T x + b = \pm 1$. Decision function: $l_i = 1$ if $w^T x + b \ge 1$, $l_i = -1$ if $w^T x + b \le 1$.

Optimization problem

$$Minimize_{w,b}\frac{1}{2}w^Tw$$

subject to $\forall i, l_i(w^T x_i + b) \geq 1$

Optimization problem

$$Minimize_{w,b} \frac{1}{2} w^T w$$

subject to $\forall i, I_i(w^T x_i + b) \geq 1$

Allow for some training errors: samples that violates the margin condition

Reformulation

$$Minimize_{w,b}\frac{1}{2}w^{T}w + C\sum_{i=1}^{N}\xi_{i}$$

subject to $\forall i, l_i(w^T x_i + b) \ge 1 - \xi_i$ and $\forall i, \xi_i \ge 0$

• Notice that constraints are equivalent to setting $\xi_i = \max(0, 1 - l_i(w^T x_i + b))$

Notice that constraints are equivalent to setting ξ_i = max(0, 1 - l_i(w^Tx_i + b))
set x_i = [x_i; 1] and w = [w; b] to simplify.

Notice that constraints are equivalent to setting ξ_i = max(0, 1 - l_i(w^Tx_i + b))
set x_i = [x_i; 1] and w = [w; b] to simplify.

Reformulation

$$Minimize_w J(w) = \frac{1}{2}w^T w + C \sum_{i=1}^N \max(0, 1 - l_i(w^T x_i))$$

Notice that constraints are equivalent to setting ξ_i = max(0, 1 - l_i(w^Tx_i + b))
set x_i = [x_i; 1] and w = [w; b] to simplify.

Reformulation

$$Minimize_w J(w) = \frac{1}{2}w^T w + C \sum_{i=1}^N \max(0, 1 - l_i(w^T x_i))$$

• Unconstrained optimization

Notice that constraints are equivalent to setting ξ_i = max(0, 1 - l_i(w^Tx_i + b))
set x_i = [x_i; 1] and w = [w; b] to simplify.

Reformulation $Minimize_w J(w) = \frac{1}{2}w^T w + C \sum_{i=1}^N \max(0, 1 - l_i(w^T x_i))$

- Unconstrained optimization
- Gradient descent $w_{t+1} = w_t \frac{\nu_t}{\nabla_w} J(w_t)$

Stochastic gradient descent

Gradient computed per sample:

$$J(w, x_i, l_i) = \frac{1}{2}w^T w + C \max(0, 1 - l_i(w^T x_i))$$

- initialization $w_0 = 0$
- While not converged
 - For each training sample (x_i, l_i)
 - Compute $\nabla_w J(w_t, x_i, l_i)$
 - $w_{t+1} = w_t \nu_t \nabla_w J(w_t, x_i, I_i)$
- Return w

Problem

J is not differentiable!

Problem

J is not differentiable! Strategy:

- $\nabla J(w, x_i, l_i) = w$ if $\max(0, 1 l_i w^T x_i) = 0$
- $\nabla J(w, x_i, l_i) = w Cl_i x_i$ otherwise

Problem

J is not differentiable! Strategy:

- $\nabla J(w, x_i, l_i) = w$ if $\max(0, 1 l_i w^T x_i) = 0$
- $\nabla J(w, x_i, l_i) = w Cl_i x_i$ otherwise
- Initialization: $w_0 = 0$
- While not converged
 - ▶ For each training sample (*x_i*, *l_i*)
 - If $l_i w_t^T x_i \leq 1$, $w_{t+1} = (1 \nu_t) w_t + \nu_t C l_i x_i$
 - Otherwise $w_{t+1} = (1 \nu_t)w_t$
- Return w

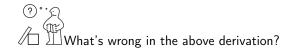
Problem

J is not differentiable! Strategy:

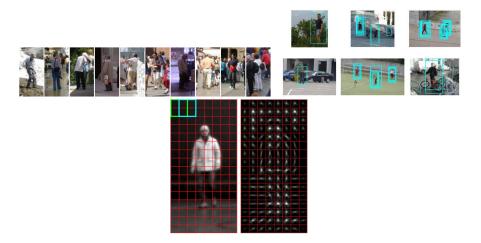
- $\nabla J(w, x_i, l_i) = w$ if $\max(0, 1 l_i w^T x_i) = 0$
- $\nabla J(w, x_i, l_i) = w Cl_i x_i$ otherwise
- Initialization: $w_0 = 0$
- While not converged
 - ▶ For each training sample (*x_i*, *l_i*)
 - If $l_i w_t^T x_i \leq 1$, $w_{t+1} = (1 \nu_t) w_t + \nu_t C l_i x_i$
 - Otherwise $w_{t+1} = (1 \nu_t)w_t$
- Return w

Stochastic Gradient Descent

Shuffle the training set before picking an example



Pedestrian detection (Dalal & Triggs 2005)



- Descriptor of each image: Histogram of oriented gradients
- Classified using a linear svm (soft: allows for some margin violation during training).

Conclusion

- A way to classify information encoded in various ways
- The choice of the encoding is crucial (color? color and localization? Filter Bank Response?)