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Objects to sort out in categories

pixels
superpixels - image patches
Entire images
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Classification Principle

Describe the objects to classify
Natural description for pixels: A triplet (R,G ,B) ∈ R3.
But one can be more specific!
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A color image in RGB

What is classification? 5/75



A color image in RGB

What is classification? 5/75



A color image in RGB

What is classification? 5/75



From the image domain to Rd

Data to classify
Recall that each pixel is representated as a vector in Rd

Example: each pixel (i , j) of an image I can be encoded as:
(i , j , r , g , b) in R5 (color image)
(∇x I (i , j),∇y I (i , j)) in R2 (grayscale image)
(I (i − 1, j − 1), I (i , j − 1), I (i + 1, j − 1), I (i − 1, j), I (i , j), I (i + 1, j), I (i −
1, j + 1), I (i , j + 1), I (i + 1, j + 1)) in R9 (grayscale image)
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Descriptor example: local histograms

Histogram of gradient orientation
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Descriptor example: response of the image to a set of filters

Particularly well adapted for textures
Each point is the set of responses of to a set of filters.
Many filters have been proposed
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For textures: Gabors filters

Gabor Filter
Measures the response to an oriented and localized filter. The filter writes:

Gθ,σ,λ = exp−x ′2 + y ′2

2σ2 cos 2πλ
x ′

σ

with x ′ = x cos θ + y sin θ, y ′ = x sin θ − y cos θ

θ controls the filter orientation
σ controls the localization of the filter
λ controls the filter frequency
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Gabor filters
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Convolution by a Gabor filter
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Convolution by a Gabor filter
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Classical segmentation algorithm

Supervised classification / Unsupervised classification
Data in Rd but we’ll visualize 2D examples only.
Classical examples we’ll look at: K-means, mean-shift, Expectation
Maximization

Recent advances
Deep Learning methods learn object descriptions (feature vectors). ImageNet
Benchmark: AlexNet [Krizhevsky et al. 2012] ... [Chen et al. 2023]
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Classification in R2 (for easier visualization)
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K-Means

Goal: Extract classes (or clusters) from a set of points (Group the points into
clusters)
In this algorithm a class is represented by a special element called class
representative of cluster center.
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K-means

Principle
Let (xi )i=1···n ∈ Rd a set of n points, K a given cluster number and (yk)k=1···K
the cluster centers, then the label k0 of a point xi is:

k0 = argmink∈1···K∥yk − xi∥2

Goal: Find the cluster centers yk AND the labels of points xi
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Algorithm

If we know the cluster centers, can we compute the labels?
If we know the labels, can we compute the cluster centers?
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Algorithm

Algorithm 1: Algorithme K-Means
Data: (xi )i=1···n ∈ Rd , a number of classes K
Result: An assignment for (li )i=1···n ∈ {1 · · ·K} and representatives

(yk)i=1···K
1 Start with random yk drawn from xi ;
2 do
3 Assign to each xi the label corresponding to its nearest yk ;
4 For each k , update yk as the barycenter of the xi with label k ;
5 Until Convergence;
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Iteration 1
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Iteration 2
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Iteration 3
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Iteration 4
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Iteration 5
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Iteration 6
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Iteration 7
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Iteration 8
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Iteration 9
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Algorithm convergence?

Measure the time when the clusters (or the labels) do not change
Average motion of the cluster center is close to 0
Better: No labeling is changed (→ the cluster center will not move at the
next iteration)

K-means 34/75



Algorithm initialization

A random choice in the set of xi
A random choice in the domain of the xi?

Random from the set Random in the domain
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Convergence... To a local minimum
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A small detour by Computational Geometry

The Voronoi Diagram of S is a partition of space into regions V (p) (p ∈ S)
such that all points in V (p) are closer to p than any other point in S .
For a vertex, we can draw an empty circle that just touches the three points
in S around the vertex.
Each Voronoi vertex is in one-to-one correspondence with a Delaunay triangle
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Link between K-means and the Voronoi Diagram

Voronoi Diagram
In Rd using the L2 distance, the boundary of a cell is a hyperplane.

K-means
The assignation step assigns each point to the center (seed) of their Voronoi
cell.
The positions of the seeds are then recomputed.
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Color image segmentation

Color clouds

Original
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Color image segmentation

Color clouds

2 classes
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Color image segmentation

Color clouds

3 classes
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Color image segmentation

Color clouds

4 classes
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Color image segmentation

Color clouds

5 classes
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Color image segmentation

Color clouds

10 classes
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On textures

Color clouds

K-means 40/75



On textures
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On textures

Color clouds

3 classes
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On textures

Color clouds

4 classes
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On textures
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On textures

With local histograms of gradient orientations (size 16x16)
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On textures

With local histograms of gradient orientations (size 32x32)

K-means 43/75



On textures

With Gabor filters
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On textures

With Gabor filters
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Conclusion on K-means

It is necessary to know the number of classes K

Strong dependency on the initialization
Assumes that classes can be separated by an hyperplane.
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Dropping the hyperplane assumption

Embed the data in a space where the classes will be indeed separated by
hyperplanes (kernel trick)
Use the K-means algorithm in this space.

K-means 47/75



Outline

1 What is classification?

2 K-means

3 Mean-Shift

4 Support Vector Machine

Mean-Shift 48/75



Mean-shift

Figure: Data Example
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Mean-shift

Idea: clusters correspond to high point densities areas
Points will evolve and be attracted towards high density areas
When the convergence is reached we’ll deduce the classification

“Particle filter”
Points are particles moving in Rd

Mean-Shift 50/75



Mean-shift

Definition
Let (xi )i be a set of observations in Rd Let K be a kernel, an estimator of the
local point density at x :

f (x) =
1

nhd

n∑
i=1

K (
x − xi
h

)
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A word on kernels

A kernel K is a function defined on Rd with values in R iff there exists a function
k : R+ → R such that:

K (x) = k(∥x∥2)

k is nonnegative
k is decreasing
k is piecewise continuous and

∫
R+ k(x)dx < ∞

We will assume that
∫
x∈Rd k(x)dx = 1, and:

K (x) = k(∥x∥2)

Kernel examples:

Gaussian Kernel K (x) = 1
σ
√

2π
exp−(∥x∥

2

2σ2 )

Flat Kernel: K (x) = 1∥x∥2<r2(x)
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Computing the density extrema

Need to solve for ∇f (x) = 0:
Let g ≡ −k ′

Density gradient

∇f (x) = [
2

cnhd+2

n∑
i=1

g((
∥x − xi∥

h
)2)](

∑n
i=1 g((

∥x−xi∥
h )2)xi∑n

i=1 g((
∥x−xi∥

h )2)
− x)

The gradient expression can be understood easily
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Computing the density extrema
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Density gradient
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Vector from x to the weighted average of the neighbors
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Algorithm

Algorithm 2: Mean-Shift
Data: A set of points xi , kernel size h, threshold ε
Result: A set of clusters ci and labels li

1 for j = 1 · · · n do
2 x0

j = xj ;

3 t = 0;
4 while error > ε do
5 for j = 1 · · · n do

6 m(x tj ) =
∑n

i=1 g((
∥xtj −xi∥

h )2)xi∑n
i=1 g((

∥xt
j
−xi∥
h )2)

;

7 x t+1
j = m(x tj );

8 error = 1
n

∑
j ∥m(x tj )− x tj ∥;

9 t = t + 1;

10 Group xTi by position;
11 Assign xi to the cluster of xTi ;
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Iteration 2
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Iteration 3
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Iteration 5
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Iteration 8
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Iteration 11

Mean-Shift 59/75



Iteration 14
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Iteration 17
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Iteration 20
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Analysis

Pro: No need to choose the number of classes
Pro: Guaranteed convergence to a density extrema
Con: Needs post-filtering for small density extrema

Mean-Shift 63/75



Analysis

Pro: No need to choose the number of classes
Pro: Guaranteed convergence to a density extrema
Con: Needs post-filtering for small density extrema

Mean-Shift 63/75



Analysis

Pro: No need to choose the number of classes
Pro: Guaranteed convergence to a density extrema
Con: Needs post-filtering for small density extrema

Mean-Shift 63/75



Meanshift - K-means
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Meanshift - K-means

Kmeans
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Meanshift - K-means

Meanshift
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Meanshift - K-means
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Meanshift - K-means

Meanshift
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Support Vector Machine

Large margin binary classifier
Find an hyperplane separating the two classes maximizing the margin
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Support Vector Machine

Works well when the classes are linearly separable. What if it’s not the case?

Kernel trick
Find a function Φ such that the two classes of (ϕ(xi ), li )i are linearly separable.
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.

Problem: how do we design Φ? Manually or that’s where Deep Learning
methods come in handy.
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Optimization

Equation of the separating hyperplane: wT x + b = 0
If wT xi + b > 0 then li = 1, and if wT xi + b < 0 then li = −1,
Decision function: f (x) = sign(wT x + b).

Maximal margin
Maximize the distance between hyperplanes wT x + b = ±1. Decision function:
li = 1 if wT x + b ≥ 1, li = −1 if wT x + b ≤ 1.

What is the size of the margin between the two hyperplanes?

Support Vector Machine 69/75



Optimization (continued)

Optimization problem

Minimizew ,b
1
2
wTw

subject to ∀i , li (wT xi + b) ≥ 1

Allow for some training errors: samples that violates the margin condition

Reformulation

Minimizew ,b
1
2
wTw + C

N∑
i=1

ξi

subject to ∀i , li (wT xi + b) ≥ 1 − ξi and ∀i , ξi ≥ 0
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Optimization (continued)

Notice that constraints are equivalent to setting ξi = max(0, 1− li (w
T xi +b))

set xi = [xi ; 1] and w = [w ; b] to simplify.

Reformulation

MinimizewJ(w) =
1
2
wTw + C

N∑
i=1

max(0, 1 − li (w
T xi ))

Unconstrained optimization
Gradient descent wt+1 = wt − νt∇wJ(wt)
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Optimization (continued)

Stochastic gradient descent
Gradient computed per sample:

J(w , xi , li ) =
1
2
wTw + C max(0, 1 − li (w

T xi ))

initialization w0 = 0
While not converged

▶ For each training sample (xi , li )
▶ Compute ∇wJ(wt , xi , li )
▶ wt+1 = wt − νt∇wJ(wt , xi , li )

Return w
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Optimization (continued)
Problem
J is not differentiable! Strategy:

∇J(w , xi , li ) = w if max(0, 1 − liw
T xi ) = 0

∇J(w , xi , li ) = w − Clixi otherwise

Initialization: w0 = 0
While not converged

▶ For each training sample (xi , li )
▶ If liwT

t xi ≤ 1, wt+1 = (1 − νt)wt + νtClixi
▶ Otherwise wt+1 = (1 − νt)wt

Return w

Stochastic Gradient Descent
Shuffle the training set before picking an example

What’s wrong in the above derivation?
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Pedestrian detection (Dalal & Triggs 2005)

Descriptor of each image: Histogram of oriented gradients
Classified using a linear svm (soft: allows for some margin violation during
training).
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Conclusion

A way to classify information encoded in various ways
The choice of the encoding is crucial (color? color and localization? Filter
Bank Response?)
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