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Implicit surface reconstruction - Principle

See the surface as an isolevel of a given function
Extract the surface by some contouring algorithm: Marching cubes [Lorensen
Cline 87], Particle Systems [Levet et al. 06]
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Implicit functions are not necessarily distance fields

x

Ω

d(x , ∂Ω)

x

−d(x , ∂Ω)
1

1

1
1

1

x

Ω

x

1

0

0

0

0

0

0

0

Implicit surface reconstruction - a short history 4/96



Surface reconstruction from unorganized points
[Hoppe et al. 92]

Input: a set of 3D points
Idea: for points on the surface the signed distance transform has a gradient
equal to the normal

F (p) = ±min
q∈S
∥p − q∥

0 is a regular value for F and thus the isolevel extraction will give a manifold
Compute an associated tangent plane (oi , ni ) for each point pi of the point
set
Orientation of the tangent planes as explained before.
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Surface reconstruction from unorganized points
[Hoppe et al. 92]

Once the points are oriented
For each point p, find the closest centroid oi

Estimated signed distance function: f̂ (p) = ni · (p − oi )
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Poisson Surface Reconstruction [Kazhdan et al. 2006]

Input: a set of oriented samples
Reconstructs the indicator function of the surface and then extracts the
boundary.
Trick: Normals sample the function’s gradients
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Poisson Surface Reconstruction [Kazhdan et al. 2006]

1 Transform samples into a vector field
2 Fit a scalar-field to the gradients
3 Extract the isosurface
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Poisson Surface Reconstruction [Kazhdan et al. 2006]
To fit a scalar field χ to gradients V⃗ , solve:

min
χ
∥∇χ− V⃗ ∥

Eq to:

∇ · (∇χ)−∇ · V⃗ = 0⇔ ∆χ = ∇ · V⃗

Implicit surface reconstruction - a short history 9/96



From the signed distance function to the mesh

At each point in R3, the signed distance function to the surface can be
estimated
Extract the 0 levelset of this function: points where this function is 0

Approximation
Evaluate the function at the vertices of a grid and deduce the local geometry of
the surface in each grid cube.
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Example in 2D
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From Marching Squares to Marching Cubes
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Drawing lines between intersection points is ambiguous and does not give a
surface patch.
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Look-up tables
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There are 28 = 256 possible cases for cube corner values.
By symmetry + rotation arguments it reduces to 15 cases.
Build a look-up table giving the grid cell triangulation based on the corner
values case.
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Ambiguous cases
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Ambiguous cases

Refine the grid to remove ambiguation
Switch to marching tetrahedra algorithm
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Learning a signed distance [DeepSDF - Park et al. 2019]

Learn a SDF uθ to a shape X ,
knowing a set of points xi ∈ X .
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Learning

Input data: a set of points yi in R3 and their distance to the surface
si = SDF (yi )

Loss function

L(θ) =
∑
i

|clamp(uθ(yi ), δ)− clamp(si , δ)|

with clamp(h, δ) = min(δ,max(−δ, h)).

δ controls the width of the region of interest around the surface. In practice
δ = 0.1.

Architecture
8 layers MLP, (width 512), dropout, ReLU activation function (tanh for the last
layer) + weight normalization.
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Results
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Learning an occupancy function [Mescheder 2019]

Occupancy function
Given an object as a compact subset Ω ⊂ R3, the occupancy function
u : R3 → 0, 1 is such that:

uθ(x) =

{
1 if x ∈ Ω

0 otherwise

Neural network will learn a function uθ(x) predicting whether u is inside Ω or
outside Ω
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Losses

Input data: a set of points yi in R3 and their positions relatively to the
surface oi = 0 or 1.

Loss function

L(θ) =
∑
i

BCE (uθ(yi ), oi )

This is the single shape loss. Occupancy networks are mostly used in the
context of latent shape spaces, see next course for more details!
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Results
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Learning an unsigned distance
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Normal direction is easy to compute
Consistent normal orientation is hard to compute
Bad normal orientations create artifacts for the SDF estimation

Neural single shape reconstruction 23/96



Sign agnostic distance function (Aatzmon 2020]

Unoriented points (not even using normal
direction)
Signed distance function or surface indicator
function
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Losses

Loss function

loss(θ) = Ex∈DX
[τ(|uθ(x)|, hX (x))]

DX is a distribution of points
τ is a similarity function.
hX is an unsigned distance to the shape.

Conditions on τ

τ : R× R+ → R is such that:
Sign agnostic: τ(−a, b) = τ(a, b)∀(a, b) ∈ R× R+

Monotonicity: ∂τ
∂a = ρ(a− b)∀(a, b) ∈ R+ × R

Useful for the theorems guaranteeing reconstruction properties.
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Choice of hX and similarity τ

ℓ2 distance:

Signed distance function

h2(y) = min
x∈X
∥y − x∥2

ℓ0 distance:

indicator of the surface

h0(y) =

{
1 if y ∈ X

0 otherwise.

τ(a, b) = ||a| − b|l
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Choice of point distribution DX

Data points X = x , not enough to learn the whole field
For the ℓ2 distance:

DX =
∑
i

N (xi , σ
2I )

L2(θ) = Ey∼DX
[|uθ(y)| − h2(y)]

For the ℓ0 distance:

DX =
∑
i

N (xi , σ
2I ) +

∑
i

δxi

L0(θ) = Ey∼
∑

i N (xi ,σ2I )[|uθ(y)| − 1] + Ey∼
∑

i δxi
[|uθ(y)|]
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Neural Architecture

MLP Architecture

uθ(x) = φ(wT fl ◦ fl−1 ◦ · · · ◦ f1(x) + b) + c

with:
fi (x) = ν(Wix + bi )

bi ∈ Rdout
i , Wi ∈ Rdout

i ×d in
i , w ∈ Rdout

l and c ∈ R. ν are ReLU activation functions
and φ a strong nonlinearity activation function.
+ Skip connection to the middle layer.

Strong activation
φ : R← R is called a strong non-linearity if it is differentiable almost everywhere,
antisymmetric: φ(a) = −φ(−a) and there exists β ∈ R+ so that 1

β ≥ φ
′(a) ≥ β

for all a ∈ R where it is defined.

In practice we take φ(a) = a or φ(a) = tanh(a) + γa with γ ≥ 0.
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Initialization

Why? Avoid some local minima.

Theorem

Let uθ be an MLP, Let bi = 0, and Wi iid for a normal distribution N (0,
√

2√
dout
i

)

1 ≤ i ≤ l , w =
√
π√
dout
l

1, c = −r then: uθ(x) = ϕ(∥x∥ − r).
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Properties

Plane reproduction: If data points lie on a hyperplane, this plane is a critical
point of the loss.
Local plane reconstruction: Can be applied locally for surfaces.
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Results

Input point cloud, Ball Pivoting, Variational implicit reconstruction, SAL
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Implicit neural field

Signed distance field u to a surface S satisfies the Eikonal equation:

∥∇u∥ = 1 with u(x) = 0 ∀x ∈ ∂S

Since a MLP is differentiable use the Eikonal equation as a loss function
[Gropp 2020]

Geometric prior - Eikonal equation 33/96



Implicit neural field

Signed distance field u to a surface S satisfies the Eikonal equation:

∥∇u∥ = 1 with u(x) = 0 ∀x ∈ ∂S

Since a MLP is differentiable use the Eikonal equation as a loss function
[Gropp 2020]

Geometric prior - Eikonal equation 33/96



Optimization Process

Input data a set of points (xi , ni ), i ∈ I

Look for u continuous and a.e. C1 such that: ∥∇u∥ = 1
u|∂Ω = 0

∇u|∂Ω] = n
(1)

Loss [Gropp 2020]

l(θ) =
1
|I |

∑
i∈I

(|uθ(xi )|+ τ∥∇uθ(xi )− ni∥) + λEx [(∥∇uθ(x)∥ − 1)2]

Geometric prior - Eikonal equation 34/96



Periodic Activation Functions [Sitzmann 2021]
Replace ReLU by periodic activation function x → sin(ωx). Better
differentiability
Loss:

Lsdf =
1
|I |

∑
i∈I

(|uθ(xi )|+ τ∥∇uθ(xi )− ni∥)

+ λEx [(∥∇uθ(x)∥ − 1)2] + λ2Ex /∈Ω[(∥ψ(uθ(x)∥]

with ψ(uθ(x)) = exp−α|uθ(x)|; α >> 1
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Periodic Activation Functions [Sitzmann 2021]
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Sphere tracing

Light Source

Scene Object

Shadow RayView Ray

Image
Camera
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Requires to compute ray/surface intersection.
Direct intersection with explicit representations (Meshes/Geometric
primitives)
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Sphere tracing [Hart 1996]

1 Input: a point x and direction v, a
signed distance field u.

2 Initialize t = 0
3 While t < D

1 xt = x + tv
2 d = u(xt)
3 If d < ε Return xt
4 Else Increment t = t + d
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After intersection...

Similar to ray tracing, rebounds can
be computed
Direct light only: color = scalar
product of normal at intersection
point and light direction.
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Regularizing INR away from the surface

[Clémot, Digne 2023]
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Medial Axis

Definition
A point p belongs to the medial axis of a compact shape if it has at least two
distinct nearest neighbors on the shape surface.
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Overview

INR training
Point set with

oriented normals
Uniform

surface points
Skeletal points Skeletal complex

MILP solving
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Eikonal Equation

Infinite number of solutions
Viscosity solution theory: allows to select
the right solution
Use smooth eikonal equation (not practical
[Lipman 2019])

∥∇u∥ − ε∆u = 1

Consequence: blobs appear

[C
am

ill
i
20

14
]

Infinite nber of solutions
Not an issue close to the surface – but far away?
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Which neural network?

MLP (6 layers, 128-256 neurons/layer) with
ReLU activation functions
ReLU yields a function in W 1,p [Lipman
2019]
But: not always easy to train
Sitzman (2021) replaces ReLU with sine
activation function: smooth function

IGR SIREN

u
∥∇

u
∥

∥∇
∥∇

u
∥∥
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TV regularization - some theory

Look for a smooth surrogate for the signed distance function
Medial axis: zeros of the gradient
The TV term favors that u has no second order differential content along the
gradient lines

Since ∇u = (ux , uy , uz), it follows:

∇∥∇u∥ = ∇
√
u2
x + u2

y + u2
z

=
1

2∥∇u∥

2uxuxx + 2uyuxy + 2uzuxz
2uxuxy + 2uyuyy + 2uzuyz
2uxuzx + 2uyuzy + 2uzuzz


= Hu

∇u
∥∇u∥
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Total loss

Eikonal loss:
Leikonal =

∫
R3

(1− ∥∇u(p)∥)2 dp (2)

Surface loss:

Lsurface =

∫
∂Ω

u(p)2dp +

∫
∂Ω

1− n(p) · ∇u(p)
∥n(p)∥ ∥∇u(p)∥

dp (3)

Learning point loss

Llearning =
∑
p∈P

(u(p)− d(p))2 +
∑
p∈P

1− ∇u(p) · ∇d(p)
∥∇u(p)∥ ∥∇d(p)∥

(4)

+ TV loss

Loss

L = λeLeikonal + λsLsurface + λlLlearning + λTVLTV (5)
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Convergence

0 10 20 30 40 50
Epochs

10 2

10 1

100

101 Point cloud loss (0.01)
Eikonal loss (0.01)
Learning points loss (0.00)
Total variation loss (1.07)
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Resulting Fields
Ours
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∥∇u∥
Ours
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Ours
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Siren
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then...

GPU skeleton tracing to extract points on the skeleton
Select a subset based on the Coverage Axis method [Dou 2022]

▶ N points xi , M skeletal points si with distance ri to the surface.
▶ Coverage matrix: D (N ×M)

Dij = 1 if ∥pi − sj∥ − rj ≤ δ and 0 otherwise

▶ Mixed Integer Linear Problem:

min ∥v∥2

s.t. Dv ⪰ 1 (6)

Link the selected points by computing the regular triangulation of weighted
skeletal points and surface points + keep simplices between skeletal points
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Results
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Results
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Ours Coverage Axis L1-medial skeleton
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Results

Ours Coverage Ours Coverage
Axis Axis
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With noise
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Learning Occupancy functions [Chen 2019, Mescheder 2020]

[C
he
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]

Use an encoder (e.g. PointNet [Qi 2017]) to get the shape latent description
α.
Train a neural network to compute the occupancy network of a shape given
(x , y , z , α).
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Data and Losses

A set of N shapes Si with points yik for which the occupancy is known.
Training loss:

1
|B|

N∑
i=1

K∑
k=1

L(uθ(yik , αi ), oik)

L(uθ(yik , αi ), oik) = |uθ(yik , αi )− oik |2

Chen et al. [2019] adds a sampling density weight
Mescheder et al. [2020] adds a KL divergence between a latent description
prior and the encoder distribution.
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Results and Comparisons
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Results - single view reconstruction
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DeepSDF
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Represent an entire class of shapes in an implicit way
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Training

[P
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Single shape version

L(fθ(x), s) = |clamp(fθ, δ)− clamp(x , δ)|

with clamp(x , δ) = min(δ,max(−δ, x)), s isovalue.
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Training
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Latent shape version

fθ(zi , x) = SDF i (x)

Model several distance fields with a single network (factor in shape space)
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Auto-decoder
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]

Usually: train an auto-encoder + throw away the encoder.
Here: avoid spending computational resources on encoder.
Handle shapes of different number of samples.
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Model for the auto-decoder

Data: N shapes Xi = {(xj , sj), sj = SDF i (xj)}.
Latent code zi , prior p(zi ) = centered Gaussian with spherical covariance.

pθ(zi |Xi ) = p(zi )
∏
j

pθ(sj |zi , xj)

Reformulation:

p(sj |zi , xj) = exp(−L(fθ(zi , xj), sj)) with fθ an MLP.

Training

argminθ,{zi}N
i=1

N∑
i=1

K∑
j=1

L(fθ(zi , xj), sj) +
1
σ2 ∥zi∥

2
2
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Network architecture
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results
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solve for the shape code from partial shapes and reconstruct
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results
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Neural Radiance Field (Nerf [Mildenhall et al. 2020])

Goal: Generate a new view from a set of views
Cameras are calibrated (ie we know their positions, orientations and intrinsic
parameters)
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Principle
Neural network takes as input a 3D coordinate and viewing direction and outputs
the volume density and view-dependent emitted radiance at this location and
direction.

FΘ(x , y , z , θ, ϕ) = (R,G ,B, σ)

Architecture MLP with ReLU activations.
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Rendering from the volume

Color of a ray
Ray r(t) = o + td

C (r) =
∫ tf

tn

T (t)σ(r(t))C (r(t), d)dt

with:

T (t) = exp−
∫ t

tn

σ(r(s))ds

tn, tf : near and far bounds

T : attenuation of the ray so far (Beer’s law)
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Integral approximation

Stratified sampling along the ray of positions ti

Discrete Version

C (r) =
∑
i

Ti (1− exp(−σ(ti )∥ti+1 − ti∥))C (ri )

with
Ti =

∑
i

exp(−σ(ti )∥ti+1 − ti∥)
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Training
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Positional Encoding

Add a non-learnable layer to embed the position in a higher dimensional
space:

(cos x , cos 2x , · · · , cosNx , cos y , cos 2y , · · · , cosNy , cos z , cos 2z , · · · , cosNz)

Intuition: Frequency decomposition, allows to get high frequency information
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View-dependency

View-dependent radiance is what allows to capture mirror reflections
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Results

Video: https://www.matthewtancik.com/nerf

Training time
The optimization for a single scene typically take around 100– 300k iterations to
converge on a single NVIDIA V100 GPU (about 1–2 days). (Faster variants
released since: Instant NGP [Mueller 2022])
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converge on a single NVIDIA V100 GPU (about 1–2 days). (Faster variants
released since: Instant NGP [Mueller 2022])
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After Nerf... Plenoxels [Yu et al. 2021]

[Y
u

et
al

.
20

21
]

No neural net
(way) faster than nerf
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Method
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Spherical harmonics
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Ym
l (θ, φ) = e imφPm

l (cos(θ))

Pm
l Associated Legendre polynomial

Pm
l (x) = (−1)m(1− x2)m/2

l∑
k=m

k!

(k −m)!
xk−m

(
l

k

)(
(l + k − 1)/2

l

)
Orthogonal function basis

f (r , θ, φ) =
∞∑
l=0

l∑
m=−l

r le imφY l
m(cos θ)
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Color and spherical harmonics

Spherical harmonics of degree 2 → 9 coefficients per color channel
Color C (r) = sum of the spherical harmonics evaluated in the ray direction
Estimation on the vertices of a sparse grid and linear interpolation per grid
cell.
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Losses

Optimization on SH coefficients and density minimizing the Loss:

Lrecon + λLTV

Reconstruction Loss:

Lrecon =
∑
r∈R
∥C (r)− Ĉ (r)∥22

TV Loss:
LTV =

1
|V|

∑
v∈V,d∈D

∑
i

∥∇xSHi∥2 + ∥∇xσ∥2

(V and R stochastic samplings of the grid vertices and rays)
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Results
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Results
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Insight: What makes nerf work is not the neural net but Differentiable
rendering.
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Gaussian Splatting

Build on point set Splatting [Zwicker 2001]
Each point is the center of a small 3D Gaussian on it,
Each 3D Gaussian is represented by a quaternion and 3 scaling factors.
Gaussian splat = gaussian parameters + opacity + Spherical harmonics
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Overview
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Structure from Motion (SfM)
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Cameras calibrated by Structure from Motion [Snavely 2006]
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Rendering a Gaussian splat scene

Projective space Gaussian giving the color.

G (x) = exp−xTΣ−1x → G ′(x) = exp−xTΣ′−1
x

Viewing direction W Σ′ = JWΣW T

J jacobian of the affine approx of the projective transformation:

J =

fx/z 0 −fx tx/z2

0 fy/z −fy ty/z2

0 0 0


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Rasterizer

Split screen in tiles
Cull 3d Gaussians against view frustrum
Each tile = depth sorted Gaussians
When saturation level is reached: stop
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Creating or Destroying Geometry
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Number of iterations
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Conclusion

Geometric data synthesis is hard
Overview of Single shape implicit representation techniques
Signed distance field or occupancy function or ??
Nerf/Gaussian Splat: do we need to compute the geometry or only render?
Multi-resolution, levels of details for neural implicits.
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Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some
unprocessed data that should have been added to the final page this extra page
has been added to receive it.
If you rerun the document (without altering it) this surplus page will go away,
because LATEX now knows how many pages to expect for this document.
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