
Machine Learning for Image Synthesis

Julie Digne

Master ID3D
LIRIS - CNRS

Équipe Origami

16/11/2023

1/84

Teaser 1

St
ab

le
D

iff
us

io
n

[R
om

ba
ch

et
al

.2
02

2]
,C

od
y

B
la

ke
ne

y
(@

co
de

_
st

ar
)

2/84

Teaser 2

M
es

hC
N

N
[H

an
oc

ka
et

al
.

20
19

]

3/84

Outline

1 Introduction

2 General Formulation

3 Very small reminder on Convolutional Neural Networks

4 Solving Inverse Problems for Images

5 Generative problems

6 Generative Adversarial Networks (GAN)

7 Denoising diffusion

8 Attention is all you need!

Introduction 4/84

Classical Vision Algorithms

Line detection:

RANSAC/Hough for line parameter estimation.

Cat recognition: devise a model for a cat.
Example: two close-by ellipsoids
Airplane recognition: devise a model for an airplane.
Example one rectangle and two triangles?
How about when it’s more complicated?

Problem
MS-COCO : 91 categories of objects. [Biederman 87]: around 10000 to 30000
common objects to model: a model for each of them Not doable in practice.

Introduction 5/84

Classical Vision Algorithms

Line detection: RANSAC/Hough for line parameter estimation.

Cat recognition: devise a model for a cat.

Example: two close-by ellipsoids
Airplane recognition: devise a model for an airplane.
Example one rectangle and two triangles?
How about when it’s more complicated?

Problem
MS-COCO : 91 categories of objects. [Biederman 87]: around 10000 to 30000
common objects to model: a model for each of them Not doable in practice.

Introduction 5/84

Classical Vision Algorithms

Line detection: RANSAC/Hough for line parameter estimation.
Cat recognition: devise a model for a cat.

Example: two close-by ellipsoids

Airplane recognition: devise a model for an airplane.
Example one rectangle and two triangles?
How about when it’s more complicated?

Problem
MS-COCO : 91 categories of objects. [Biederman 87]: around 10000 to 30000
common objects to model: a model for each of them Not doable in practice.

Introduction 5/84

Classical Vision Algorithms

Line detection: RANSAC/Hough for line parameter estimation.
Cat recognition: devise a model for a cat.
Example: two close-by ellipsoids

Airplane recognition: devise a model for an airplane.

Example one rectangle and two triangles?
How about when it’s more complicated?

Problem
MS-COCO : 91 categories of objects. [Biederman 87]: around 10000 to 30000
common objects to model: a model for each of them Not doable in practice.

Introduction 5/84

Classical Vision Algorithms

Line detection: RANSAC/Hough for line parameter estimation.
Cat recognition: devise a model for a cat.
Example: two close-by ellipsoids
Airplane recognition: devise a model for an airplane.

Example one rectangle and two triangles?

How about when it’s more complicated?

Problem
MS-COCO : 91 categories of objects. [Biederman 87]: around 10000 to 30000
common objects to model: a model for each of them Not doable in practice.

Introduction 5/84

Classical Vision Algorithms

Line detection: RANSAC/Hough for line parameter estimation.
Cat recognition: devise a model for a cat.
Example: two close-by ellipsoids
Airplane recognition: devise a model for an airplane.
Example one rectangle and two triangles?

How about when it’s more complicated?

Problem
MS-COCO : 91 categories of objects. [Biederman 87]: around 10000 to 30000
common objects to model: a model for each of them Not doable in practice.

Introduction 5/84

Classical Vision Algorithms

Line detection: RANSAC/Hough for line parameter estimation.
Cat recognition: devise a model for a cat.
Example: two close-by ellipsoids
Airplane recognition: devise a model for an airplane.
Example one rectangle and two triangles?
How about when it’s more complicated?

Problem
MS-COCO : 91 categories of objects. [Biederman 87]: around 10000 to 30000
common objects to model: a model for each of them Not doable in practice.

Introduction 5/84

Classical Vision Algorithms

Line detection: RANSAC/Hough for line parameter estimation.
Cat recognition: devise a model for a cat.
Example: two close-by ellipsoids
Airplane recognition: devise a model for an airplane.
Example one rectangle and two triangles?
How about when it’s more complicated?

Problem
MS-COCO : 91 categories of objects. [Biederman 87]: around 10000 to 30000
common objects to model: a model for each of them Not doable in practice.

Introduction 5/84

Machine learning and vision

Recognition/detection

▶ Recognize objects in an image/video.
▶ Locate an object in an image/video
▶ Recognize a behavior/an emotion in a video

Synthesis

▶ Generate an image that looks like a set of examples
▶ Generate an image from a sketch given by a user.

Introduction 6/84

Machine learning and vision

Recognition/detection
▶ Recognize objects in an image/video.

▶ Locate an object in an image/video
▶ Recognize a behavior/an emotion in a video

Synthesis

▶ Generate an image that looks like a set of examples
▶ Generate an image from a sketch given by a user.

Introduction 6/84

Machine learning and vision

Recognition/detection
▶ Recognize objects in an image/video.
▶ Locate an object in an image/video

▶ Recognize a behavior/an emotion in a video

Synthesis

▶ Generate an image that looks like a set of examples
▶ Generate an image from a sketch given by a user.

Introduction 6/84

Machine learning and vision

Recognition/detection
▶ Recognize objects in an image/video.
▶ Locate an object in an image/video
▶ Recognize a behavior/an emotion in a video

Synthesis

▶ Generate an image that looks like a set of examples
▶ Generate an image from a sketch given by a user.

Introduction 6/84

Machine learning and vision

Recognition/detection
▶ Recognize objects in an image/video.
▶ Locate an object in an image/video
▶ Recognize a behavior/an emotion in a video

Synthesis

▶ Generate an image that looks like a set of examples
▶ Generate an image from a sketch given by a user.

Introduction 6/84

Machine learning and vision

Recognition/detection
▶ Recognize objects in an image/video.
▶ Locate an object in an image/video
▶ Recognize a behavior/an emotion in a video

Synthesis
▶ Generate an image that looks like a set of examples

▶ Generate an image from a sketch given by a user.

Introduction 6/84

Machine learning and vision

Recognition/detection
▶ Recognize objects in an image/video.
▶ Locate an object in an image/video
▶ Recognize a behavior/an emotion in a video

Synthesis
▶ Generate an image that looks like a set of examples
▶ Generate an image from a sketch given by a user.

Introduction 6/84

Supervised and Unsupervised learning

Supervised Learning a set of data (xi)i and associated labels (ex: cat, car,
house...) (li)i , learn a function f̂ such that f̂ (xi) = li .

Unsupervised Learning a set of data (xi)i without any label and learns from
similarities between data.

Introduction 7/84

Supervised and Unsupervised learning

Supervised Learning a set of data (xi)i and associated labels (ex: cat, car,
house...) (li)i , learn a function f̂ such that f̂ (xi) = li .
Unsupervised Learning a set of data (xi)i without any label and learns from
similarities between data.

Introduction 7/84

Some examples from previous classes

Meanshift

K-means
Expectation-Maximization

Grouping problems
Unsupervised learning: no label provided for learning the classes.

Introduction 8/84

Some examples from previous classes

Meanshift
K-means

Expectation-Maximization

Grouping problems
Unsupervised learning: no label provided for learning the classes.

Introduction 8/84

Some examples from previous classes

Meanshift
K-means
Expectation-Maximization

Grouping problems
Unsupervised learning: no label provided for learning the classes.

Introduction 8/84

Some examples from previous classes

Meanshift
K-means
Expectation-Maximization

Grouping problems
Unsupervised learning: no label provided for learning the classes.

Introduction 8/84

Is this object in the image?

Fr
om

W
ik

im
ed

ia
C
om

m
on

s
-

us
er

M
ik

ef
ai

rb
an

ks

Fr
om

W
ik

im
ed

ia
C
om

m
on

s
-

us
er

C
ol

on
el

_
W

ar
de

n

Recognition/Classification: Is there a bicycle in this image?
Detection: Where is the bicycle in the image if any?

For now: supervised learning setting.

Introduction 9/84

Why is object recognition/detection difficult?

[Ö
zu

ys
al

et
al

.
20

10
]

Introduction 10/84

Why is object recognition/detection difficult?

[K
oe

nd
er

in
k

et
al

.
20

07
]

Introduction 11/84

Why is object recognition/detection difficult?

©
Je

pp
e

O
ls
en

ht
tp

s:
//

ww
w.

fl
ic

kr
.c

om
/p

ho
to

s/
je

pp
eo

ls
en

/4
80

23
01

43
9/

Introduction 12/84

https://www.flickr.com/photos/jeppeolsen/4802301439/

Why is object recognition/detection difficult?

©
O

be
ck

ht
tp

s:
//

ww
w.

fl
ic

kr
.c

om
/p

ho
to

s/
ob

ec
k/

14
47

95
62

5/

Introduction 13/84

https://www.flickr.com/photos/obeck/144795625/

Why is object recognition/detection difficult?

[A
ub

ry
et

al
.

20
14

]

Introduction 14/84

Outline

1 Introduction

2 General Formulation

3 Very small reminder on Convolutional Neural Networks

4 Solving Inverse Problems for Images

5 Generative problems

6 Generative Adversarial Networks (GAN)

7 Denoising diffusion

8 Attention is all you need!

General Formulation 15/84

General setup of a supervised machine learning problem

Data: split into:
▶ Training data
▶ Evaluation data
▶ Test data

Given data and labels (xi , li)i , find f minimizing an objective function:∑
i

(f (xi)− li)
2

This is the ℓ2loss but several objective functions exist (also called loss)

General Formulation 16/84

General setup of a supervised machine learning problem

Data: split into:
▶ Training data
▶ Evaluation data
▶ Test data

Given data and labels (xi , li)i , find f minimizing an objective function:∑
i

(f (xi)− li)
2

This is the ℓ2loss but several objective functions exist (also called loss)

General Formulation 16/84

Underfitting and Overfitting

Fr
om

m
ed

iu
m

.c
om

ht
tp

s:
//

da
ta

-m
in

in
g.

ph
il

ip
pe

-f
ou

rn
ie

r-
vi

ge
r.

co
m

General Formulation 17/84

https://data-mining.philippe-fournier-viger.com

Underfitting and Overfitting

Fr
om

m
ed

iu
m

.c
om

ht
tp

s:
//

da
ta

-m
in

in
g.

ph
il

ip
pe

-f
ou

rn
ie

r-
vi

ge
r.

co
m

General Formulation 17/84

https://data-mining.philippe-fournier-viger.com

Precision and Recall

Precision: how accurate is the classifier in detecting a positive example and
not misclassifying.

#True positives
#True positives +#False positives

Recall: how accurate is the classifier in correctly detecting a positive
example.

#True positives
#positive examples

Precision and recall curves are usually drawn with respect to the number of
training iterations.

Other indicators
Bias, variance, confusion matrix...

General Formulation 18/84

Outline

1 Introduction

2 General Formulation

3 Very small reminder on Convolutional Neural Networks

4 Solving Inverse Problems for Images

5 Generative problems

6 Generative Adversarial Networks (GAN)

7 Denoising diffusion

8 Attention is all you need!

Very small reminder on Convolutional Neural Networks 19/84

Neural Network

to
w
ar

ds
da

ta
sc

ie
nc

e.
co

m

Each connection has a weight w
Each neuron has a bias b and an activation function s (e.g. sigmoid).
Output of a neuron s(wx + b)

For images
Each pixel is an input to the net.

Very small reminder on Convolutional Neural Networks 20/84

Neural Network

to
w
ar

ds
da

ta
sc

ie
nc

e.
co

m

Each connection has a weight w
Each neuron has a bias b and an activation function s (e.g. sigmoid).
Output of a neuron s(wx + b)

For images
Each pixel is an input to the net.

Very small reminder on Convolutional Neural Networks 20/84

Training a neural network

Output
In classification cases, the neural network outputs a class the input image
supposedly belongs to.

Cost function
For training samples, we evaluate how well the neural net performed via a cost
function C : Mean Square error,Cross-Entropy...

Very small reminder on Convolutional Neural Networks 21/84

Training a neural network

Output
In classification cases, the neural network outputs a class the input image
supposedly belongs to.

Cost function
For training samples, we evaluate how well the neural net performed via a cost
function C : Mean Square error,Cross-Entropy...

Very small reminder on Convolutional Neural Networks 21/84

Training a neural network

To optimize the cost C
Gradient descent with respect to weight wi and bias bi for each neuron i .

Back-Propagation
The gradient can be propagated back from the output to the input(chain rule).

Very small reminder on Convolutional Neural Networks 22/84

Training a neural network

To optimize the cost C
Gradient descent with respect to weight wi and bias bi for each neuron i .

Back-Propagation
The gradient can be propagated back from the output to the input(chain rule).

Very small reminder on Convolutional Neural Networks 22/84

Back-propagation example

Toy model
Compute the gradient of the cost with respect to each parameter.

x

a2 = s2(w2x + b2)a1 = s1(w1x + b1)

w1 w2
F (x)

In practice start with random weights and bias.

Very small reminder on Convolutional Neural Networks 23/84

Back-propagation example

Toy model
Compute the gradient of the cost with respect to each parameter.

x

a2 = s2(w2x + b2)a1 = s1(w1x + b1)

w1 w2
F (x)

In practice start with random weights and bias.

Very small reminder on Convolutional Neural Networks 23/84

Convolutional Neural Networks

Shared parameters
Dropping fully connected layers, CNN use convolutions by kernels with weights
independent of the image location. These weights are optimized during training.

to
w
ar

ds
da

ta
sc

ie
nc

e.
co

m

Very small reminder on Convolutional Neural Networks 24/84

Convolutional Neural Networks

Shared parameters
Dropping fully connected layers, CNN use convolutions by kernels with weights
independent of the image location. These weights are optimized during training.

to
w
ar

ds
da

ta
sc

ie
nc

e.
co

m

Very small reminder on Convolutional Neural Networks 24/84

Convolution layer parameters

Kernel size: controls the locality of the kernel
Padding: increases the size of the input
Dilatation: aggregates values from every n pixels where n is the dilatation.
(eq to set some weights in the kernel to 0).
Stride: performs the convolution centered every n pixels where n is the stride.

Visualization
https://ezyang.github.io/convolution-visualizer/index.html

Very small reminder on Convolutional Neural Networks 25/84

https://ezyang.github.io/convolution-visualizer/index.html

Outline

1 Introduction

2 General Formulation

3 Very small reminder on Convolutional Neural Networks

4 Solving Inverse Problems for Images

5 Generative problems

6 Generative Adversarial Networks (GAN)

7 Denoising diffusion

8 Attention is all you need!

Solving Inverse Problems for Images 26/84

Deep Image Prior [Ulyanov et al 2018]

Inverse Problems
We know only a degraded version of an image, we want to recover the original one.

ML + Inverse Problems
Learn the inverse transform from example

Deep Image Prior
Not all statistics need to be learn from databases, a lot is captured by the
structure of generative convolutional nets.

Solving Inverse Problems for Images 27/84

Deep Image Prior [Ulyanov et al 2018]

Inverse Problems
We know only a degraded version of an image, we want to recover the original one.

ML + Inverse Problems
Learn the inverse transform from example

Deep Image Prior
Not all statistics need to be learn from databases, a lot is captured by the
structure of generative convolutional nets.

Solving Inverse Problems for Images 27/84

Deep Image Prior [Ulyanov et al 2018]

Inverse Problems
We know only a degraded version of an image, we want to recover the original one.

ML + Inverse Problems
Learn the inverse transform from example

Deep Image Prior
Not all statistics need to be learn from databases, a lot is captured by the
structure of generative convolutional nets.

Solving Inverse Problems for Images 27/84

Inverse problem: Super-resolution

Solving Inverse Problems for Images 28/84

Deep generator formulation

Deep generator
A network parametered by θ which maps an input code vector z to an image x :

x = fθ(z)

Usual DL approach
Knowledge about the distribution p(x) of x is encoded in θ which should be
optimized wrt to a database.

Deep prior approach [Ulyanov 2018]
A significant amount of information is encoded in the structure of the generator
network, even without training its parameters.

Solving Inverse Problems for Images 29/84

Principle

[U
ly

an
ov

20
18

]

Solving Inverse Problems for Images 30/84

Energy formulation

Inverse problem
x0 is observed, one wants to find x close to x0 but better :

x∗ = argminxE (x , x0) + R(x)

E is an energy (e.g. E (x , x0) = ∥x − x0∥2)
R is a regularization term (e.g. R(x) = ∥x∥2, R(x) = TV (x)).

Deep Prior = regularizer

θ∗ = argminθE (x , fθ(z) with x∗ = fθ∗(z)

Solving Inverse Problems for Images 31/84

Denoising

[U
ly

an
ov

20
18

]

Solving Inverse Problems for Images 32/84

Inpainting

[U
ly

an
ov

20
18

]

Solving Inverse Problems for Images 33/84

JPEG artefact removal

[U
ly

an
ov

20
18

]

Stop before overfitting!

Solving Inverse Problems for Images 34/84

More complex inpainting

[U
ly

an
ov

20
18

]

Solving Inverse Problems for Images 35/84

Lab work

Train your own deep prior network
Encoder-decoder architecture with two skip connections
First application: plain image reconstruction
Applications: denoising and inpainting

Solving Inverse Problems for Images 36/84

Outline

1 Introduction

2 General Formulation

3 Very small reminder on Convolutional Neural Networks

4 Solving Inverse Problems for Images

5 Generative problems

6 Generative Adversarial Networks (GAN)

7 Denoising diffusion

8 Attention is all you need!

Generative problems 37/84

Generative problems

ht
tp

s:
//

sh
-t

sa
ng

.m
ed

iu
m.

co
m/

re
vi

ew
-d

cg
an

-d
ee

p

-c
on

vo
lu

tio
na

l-g
en

er
at

iv
e-

ad
ve

rs
ar

ia
l-n

et
w
or

k-
ga

n-
ec

39
0c

de
d6

3c

Generative problems 38/84

https://sh-tsang.medium.com/review-dcgan-deep

Generative Problems

Goal
Given a set of samples x1, x2, · · · , xn (images, signals, animations...) learn a
model pθ(x) of the true underlying distribution p(x).

In practice, we use some prior knowledge of the problem to model pθ.
Optimize θ, to minimize the difference between p and pθ.

Generative problems 39/84

Generative Problems

Goal
Given a set of samples x1, x2, · · · , xn (images, signals, animations...) learn a
model pθ(x) of the true underlying distribution p(x).

In practice, we use some prior knowledge of the problem to model pθ.

Optimize θ, to minimize the difference between p and pθ.

Generative problems 39/84

Generative Problems

Goal
Given a set of samples x1, x2, · · · , xn (images, signals, animations...) learn a
model pθ(x) of the true underlying distribution p(x).

In practice, we use some prior knowledge of the problem to model pθ.
Optimize θ, to minimize the difference between p and pθ.

Generative problems 39/84

An almost-training-free approach

Idea
Use a pretrained CNN (ImageNet) and
make the features resemble those of the
target image (using gradient descent)

Texture synthesis [Gatys et al. 2015]
Style tranfer [Gatys et al. 2016].

[G
at

ys
et

al
.

20
16

]

Generative problems 40/84

Autoregressive maximum likelihood methods (PixelRNN,
PixelCNN) [Van der Oord et al. 2016]

Idea
Find the model with the highest likelihood to have generated the data.

Pixels x1, x2, · · · xn
pθ(xi) =

∏
i p(xi |xi−1, · · · xn)

Process
Generate pixels sequentially starting from a corner. Dependency on the previous
pixels modeled by a Recurrent Neural Network (PixelRNN) or a Convolutional
Neural Network (PixelCNN).

Generative problems 41/84

Autoregressive maximum likelihood methods (PixelRNN,
PixelCNN) [Van der Oord et al. 2016]

Idea
Find the model with the highest likelihood to have generated the data.

Pixels x1, x2, · · · xn

pθ(xi) =
∏

i p(xi |xi−1, · · · xn)

Process
Generate pixels sequentially starting from a corner. Dependency on the previous
pixels modeled by a Recurrent Neural Network (PixelRNN) or a Convolutional
Neural Network (PixelCNN).

Generative problems 41/84

Autoregressive maximum likelihood methods (PixelRNN,
PixelCNN) [Van der Oord et al. 2016]

Idea
Find the model with the highest likelihood to have generated the data.

Pixels x1, x2, · · · xn
pθ(xi) =

∏
i p(xi |xi−1, · · · xn)

Process
Generate pixels sequentially starting from a corner. Dependency on the previous
pixels modeled by a Recurrent Neural Network (PixelRNN) or a Convolutional
Neural Network (PixelCNN).

Generative problems 41/84

Autoregressive maximum likelihood methods (PixelRNN,
PixelCNN) [Van der Oord et al. 2016]

Idea
Find the model with the highest likelihood to have generated the data.

Pixels x1, x2, · · · xn
pθ(xi) =

∏
i p(xi |xi−1, · · · xn)

Process
Generate pixels sequentially starting from a corner. Dependency on the previous
pixels modeled by a Recurrent Neural Network (PixelRNN) or a Convolutional
Neural Network (PixelCNN).

Generative problems 41/84

PixelRNN

Im
ag

e
fr
om

[V
an

de
r

O
or

d
et

al
.

20
16

]

Samples trained on ImageNet, 64x64 images.

Pros and Cons
Pros: explicit model of pθ, Good evaluation metric
Cons: slow because of sequential generation

Generative problems 42/84

Auto-encoders

Im
ag

e
co

py
rig

ht
A

rd
en

D
er

ta
t.

Goal
Given input data x produce z smaller than x that sums up x .

Training done by encoding x into z , decoding z into x̂ and minimizing
∥x − x̂∥2.
Latent space capture data variations Generate new data from a sample in the
latent space
If the goal is to compute an embedding: after training throw away the
decoder For generating new data, we keep only the decoder.

Generative problems 43/84

Auto-encoders

Im
ag

e
co

py
rig

ht
A

rd
en

D
er

ta
t.

Goal
Given input data x produce z smaller than x that sums up x .

Training done by encoding x into z , decoding z into x̂ and minimizing
∥x − x̂∥2.

Latent space capture data variations Generate new data from a sample in the
latent space
If the goal is to compute an embedding: after training throw away the
decoder For generating new data, we keep only the decoder.

Generative problems 43/84

Auto-encoders

Im
ag

e
co

py
rig

ht
A

rd
en

D
er

ta
t.

Goal
Given input data x produce z smaller than x that sums up x .

Training done by encoding x into z , decoding z into x̂ and minimizing
∥x − x̂∥2.
Latent space capture data variations Generate new data from a sample in the
latent space

If the goal is to compute an embedding: after training throw away the
decoder For generating new data, we keep only the decoder.

Generative problems 43/84

Auto-encoders

Im
ag

e
co

py
rig

ht
A

rd
en

D
er

ta
t.

Goal
Given input data x produce z smaller than x that sums up x .

Training done by encoding x into z , decoding z into x̂ and minimizing
∥x − x̂∥2.
Latent space capture data variations Generate new data from a sample in the
latent space

If the goal is to compute an embedding: after training throw away the
decoder For generating new data, we keep only the decoder.

Generative problems 43/84

Auto-encoders

Im
ag

e
co

py
rig

ht
A

rd
en

D
er

ta
t.

Goal
Given input data x produce z smaller than x that sums up x .

Training done by encoding x into z , decoding z into x̂ and minimizing
∥x − x̂∥2.
Latent space capture data variations Generate new data from a sample in the
latent space
If the goal is to compute an embedding: after training throw away the
decoder For generating new data, we keep only the decoder.

Generative problems 43/84

Auto-encoders

Im
ag

e
co

py
rig

ht
A

rd
en

D
er

ta
t.

Goal
Given input data x produce z smaller than x that sums up x .

Training done by encoding x into z , decoding z into x̂ and minimizing
∥x − x̂∥2.
Latent space capture data variations Generate new data from a sample in the
latent space
If the goal is to compute an embedding: after training throw away the
decoder For generating new data, we keep only the decoder.

Generative problems 43/84

Latent space

ht
tp

s:
//

to
wa

rd
sd

at
as

ci
en

ce
.c

om

Problem
The data are not spread in the latent space and well clustered.

Generative problems 44/84

https://towardsdatascience.com

Variational Auto-encoder [Kingma and Welling 2016]

[K
in

gm
a

an
d

W
el

lin
g

20
16

]

Idea
Ensure that the data spreads well in the latent space.

Add some noise to
embeddings in latent space and decode: the output should still be “valid”.

Generative problems 45/84

Variational Auto-encoder [Kingma and Welling 2016]

[K
in

gm
a

an
d

W
el

lin
g

20
16

]

Idea
Ensure that the data spreads well in the latent space. Add some noise to
embeddings in latent space and decode: the output should still be “valid”.

Generative problems 45/84

VAE

In practice
Instead of learning a vector embedding, the encoder outputs a covariance and
mean.

To decode, we sample from a Gaussian distribution with predicted covariance
and mean and compare the distributions using Kullback-Leibler divergence.

Generative problems 46/84

Variational Auto-Encoder (VAE)

Add an additional encoder qϕ(z |x) approximating pθ(z |x)

Encoder Network: qϕ(z |x), gaussian model: µz|x ,Σz|x , can sample z |x
(probabilistic encoder).
Decoder Network: pθ(x |z), gaussian model: µx|z ,Σx|z , can sample x |z
(probabilistic decoder).

[L
i,

Jo
hn

so
n,

Ye
un

g,
20

17
]

Generative problems 47/84

Variational Auto-Encoder (VAE)

Add an additional encoder qϕ(z |x) approximating pθ(z |x)
Encoder Network: qϕ(z |x), gaussian model: µz|x ,Σz|x , can sample z |x
(probabilistic encoder).

Decoder Network: pθ(x |z), gaussian model: µx|z ,Σx|z , can sample x |z
(probabilistic decoder).

[L
i,

Jo
hn

so
n,

Ye
un

g,
20

17
]

Generative problems 47/84

Variational Auto-Encoder (VAE)

Add an additional encoder qϕ(z |x) approximating pθ(z |x)
Encoder Network: qϕ(z |x), gaussian model: µz|x ,Σz|x , can sample z |x
(probabilistic encoder).
Decoder Network: pθ(x |z), gaussian model: µx|z ,Σx|z , can sample x |z
(probabilistic decoder).

[L
i,

Jo
hn

so
n,

Ye
un

g,
20

17
]

Generative problems 47/84

Variational Auto-Encoder (VAE)

Add an additional encoder qϕ(z |x) approximating pθ(z |x)
Encoder Network: qϕ(z |x), gaussian model: µz|x ,Σz|x , can sample z |x
(probabilistic encoder).
Decoder Network: pθ(x |z), gaussian model: µx|z ,Σx|z , can sample x |z
(probabilistic decoder).

[L
i,

Jo
hn

so
n,

Ye
un

g,
20

17
]

Generative problems 47/84

Objective function in a VAE

Minimization
Computing parameters θ, ϕ maximizing:
L(xi , θ, ϕ) = log pθ(xi) ≥ Ez∼qϕ(z|xi)[log pθ(xi |z)]− DKL(qϕ(z |xi)||pθ(z))

L(xi , θ, ϕ) is a lower bound of pθ(xi)

Generative problems 48/84

Objective function in a VAE

Minimization
Computing parameters θ, ϕ maximizing:
L(xi , θ, ϕ) = log pθ(xi) ≥ Ez∼qϕ(z|xi)[log pθ(xi |z)]− DKL(qϕ(z |xi)||pθ(z))

L(xi , θ, ϕ) is a lower bound of pθ(xi)

Generative problems 48/84

Image generation using VAE

Sample z from gaussian prior (diagonal covariance).

Run z through the decoder, yielding µx |z and Σx |z .
Sample x̂ from N (µx |z ,Σx |z).

Remark
Diagonal covariance for z yields independent latent variables corresponding to
interpretable factors of variation.

Pros & Cons
Pros: Interpolation possible in latent space. Latent variables can be interpretable.
Cons: Maximizes a lower bound of the likelihood, blurry results.

Generative problems 49/84

Image generation using VAE

Sample z from gaussian prior (diagonal covariance).
Run z through the decoder, yielding µx |z and Σx |z .

Sample x̂ from N (µx |z ,Σx |z).

Remark
Diagonal covariance for z yields independent latent variables corresponding to
interpretable factors of variation.

Pros & Cons
Pros: Interpolation possible in latent space. Latent variables can be interpretable.
Cons: Maximizes a lower bound of the likelihood, blurry results.

Generative problems 49/84

Image generation using VAE

Sample z from gaussian prior (diagonal covariance).
Run z through the decoder, yielding µx |z and Σx |z .
Sample x̂ from N (µx |z ,Σx |z).

Remark
Diagonal covariance for z yields independent latent variables corresponding to
interpretable factors of variation.

Pros & Cons
Pros: Interpolation possible in latent space. Latent variables can be interpretable.
Cons: Maximizes a lower bound of the likelihood, blurry results.

Generative problems 49/84

Image generation using VAE

Sample z from gaussian prior (diagonal covariance).
Run z through the decoder, yielding µx |z and Σx |z .
Sample x̂ from N (µx |z ,Σx |z).

Remark
Diagonal covariance for z yields independent latent variables corresponding to
interpretable factors of variation.

Pros & Cons
Pros: Interpolation possible in latent space. Latent variables can be interpretable.
Cons: Maximizes a lower bound of the likelihood, blurry results.

Generative problems 49/84

Image generation using VAE

Sample z from gaussian prior (diagonal covariance).
Run z through the decoder, yielding µx |z and Σx |z .
Sample x̂ from N (µx |z ,Σx |z).

Remark
Diagonal covariance for z yields independent latent variables corresponding to
interpretable factors of variation.

Pros & Cons
Pros: Interpolation possible in latent space. Latent variables can be interpretable.
Cons: Maximizes a lower bound of the likelihood, blurry results.

Generative problems 49/84

VAE Applications

[H
ou

et
al

.
20

16
]

[H
ou

et
al

.
20

16
]

Generative problems 50/84

Outline

1 Introduction

2 General Formulation

3 Very small reminder on Convolutional Neural Networks

4 Solving Inverse Problems for Images

5 Generative problems

6 Generative Adversarial Networks (GAN)

7 Denoising diffusion

8 Attention is all you need!

Generative Adversarial Networks (GAN) 51/84

GAN Principle

We are not going to model explicitly the density pθ(x)

But we will be able to sample from it!
Sample from a simple distribution and learn the transform to the training
distribution.

Generative Adversarial training
Admit you have an oracle D that rates if an image I looks real (D(I) = 1) or
unreal (D(I) = 0). If you want to synthesize an image, you want this oracle to
judge the synthesized image as real.

Saddly, we have no oracle D available.

Generative Adversarial Networks (GAN) 52/84

GAN Principle

We are not going to model explicitly the density pθ(x)

But we will be able to sample from it!
Sample from a simple distribution and learn the transform to the training
distribution.

Generative Adversarial training
Admit you have an oracle D that rates if an image I looks real (D(I) = 1) or
unreal (D(I) = 0). If you want to synthesize an image, you want this oracle to
judge the synthesized image as real.

Saddly, we have no oracle D available.

Generative Adversarial Networks (GAN) 52/84

GAN Principle

We are not going to model explicitly the density pθ(x)

But we will be able to sample from it!
Sample from a simple distribution and learn the transform to the training
distribution.

Generative Adversarial training
Admit you have an oracle D that rates if an image I looks real (D(I) = 1) or
unreal (D(I) = 0). If you want to synthesize an image, you want this oracle to
judge the synthesized image as real.

Saddly, we have no oracle D available.

Generative Adversarial Networks (GAN) 52/84

GAN

ht
tp

s:
//

st
ha

ll
es

.g
it

hu
b.

io
/i

nt
ro

-t
o-

ga
ns

/

2 players Game
G tries to synthesize images that will fool D and D tries to distinguish between
real images and fake images synthesized by G .

Objective Function

min
θG

max
θD

Ex∼pdata(x)[logDθD (x)] + Ez∼pprior (z)[log(1 − DθD (GθG (z)))]

Where θD (resp. θG) are the parameters of the discriminator (resp. generator).

Generative Adversarial Networks (GAN) 53/84

https://sthalles.github.io/intro-to-gans/

GAN

ht
tp

s:
//

st
ha

ll
es

.g
it

hu
b.

io
/i

nt
ro

-t
o-

ga
ns

/

2 players Game
G tries to synthesize images that will fool D and D tries to distinguish between
real images and fake images synthesized by G .

Objective Function

min
θG

max
θD

Ex∼pdata(x)[logDθD (x)] + Ez∼pprior (z)[log(1 − DθD (GθG (z)))]

Where θD (resp. θG) are the parameters of the discriminator (resp. generator).

Generative Adversarial Networks (GAN) 53/84

https://sthalles.github.io/intro-to-gans/

GAN training

Alternate optimization
Alternate between

1 Optimize parameters θD by gradient ascent (θG fixed).
2 Optimize parameters θG by gradient descent (θD fixed).

Do we need all the terms of the objective functions for the two steps?

Problem
In practice hard to optimize! Alternative:

1 Optimize parameters θD by gradient ascent (θG fixed).
2 Optimize parameters θG by gradient ascent (θD fixed) with objective:

max
θG

Ez∼pprior (z) logDθD (GθG (z))

Generative Adversarial Networks (GAN) 54/84

GAN training

Alternate optimization
Alternate between

1 Optimize parameters θD by gradient ascent (θG fixed).
2 Optimize parameters θG by gradient descent (θD fixed).

Do we need all the terms of the objective functions for the two steps?

Problem
In practice hard to optimize! Alternative:

1 Optimize parameters θD by gradient ascent (θG fixed).
2 Optimize parameters θG by gradient ascent (θD fixed) with objective:

max
θG

Ez∼pprior (z) logDθD (GθG (z))

Generative Adversarial Networks (GAN) 54/84

GAN training

Alternate optimization
Alternate between

1 Optimize parameters θD by gradient ascent (θG fixed).
2 Optimize parameters θG by gradient descent (θD fixed).

Do we need all the terms of the objective functions for the two steps?

Problem
In practice hard to optimize! Alternative:

1 Optimize parameters θD by gradient ascent (θG fixed).
2 Optimize parameters θG by gradient ascent (θD fixed) with objective:

max
θG

Ez∼pprior (z) logDθD (GθG (z))

Generative Adversarial Networks (GAN) 54/84

Training Algorithm
Algorithm 1: Training

1 for j = 1 · · ·N do
2 for k = 1 · · ·K do
3 Sample a minibatch of m samples zi ;
4 Sample a minibatch of m real samples xi ;
5 Update θD :

θD = θD + ν∇θD (
m∑
i=1

logDθD (xi) + log(1 − DθD (GθG (zi)))

6 Sample a minibatch of m samples zi ;
7 Update θG :

θG = θG + ν∇θG (
m∑
i=1

log(DθD (GθG (zi)))

Generation
Sample z and generate x̂ = G (z). D is not needed.

Generative Adversarial Networks (GAN) 55/84

Training Algorithm
Algorithm 2: Training

1 for j = 1 · · ·N do
2 for k = 1 · · ·K do
3 Sample a minibatch of m samples zi ;
4 Sample a minibatch of m real samples xi ;
5 Update θD :

θD = θD + ν∇θD (
m∑
i=1

logDθD (xi) + log(1 − DθD (GθG (zi)))

6 Sample a minibatch of m samples zi ;
7 Update θG :

θG = θG + ν∇θG (
m∑
i=1

log(DθD (GθG (zi)))

Generation
Sample z and generate x̂ = G (z).

D is not needed.

Generative Adversarial Networks (GAN) 55/84

Training Algorithm
Algorithm 3: Training

1 for j = 1 · · ·N do
2 for k = 1 · · ·K do
3 Sample a minibatch of m samples zi ;
4 Sample a minibatch of m real samples xi ;
5 Update θD :

θD = θD + ν∇θD (
m∑
i=1

logDθD (xi) + log(1 − DθD (GθG (zi)))

6 Sample a minibatch of m samples zi ;
7 Update θG :

θG = θG + ν∇θG (
m∑
i=1

log(DθD (GθG (zi)))

Generation
Sample z and generate x̂ = G (z). D is not needed.

Generative Adversarial Networks (GAN) 55/84

Results

[G
oo

df
el

lo
w

et
al

.
20

14
]

Generative Adversarial Networks (GAN) 56/84

What are D and G?

[R
ad

fo
rd

et
al

.
20

16
]

Deep convolutional GANs

Generative Adversarial Networks (GAN) 57/84

GAN analysis

Pros and Cons
Pros: State-of-the-art results, difficult to quantify the quality of the results.
Cons: Difficult to train, cannot produce the explicit density.

[R
ad

fo
rd

et
al

.
20

16
]

Generative Adversarial Networks (GAN) 58/84

Latent space arithmetic

[R
ad

fo
rd

et
al

.
20

16
]

Generative Adversarial Networks (GAN) 59/84

Latent space arithmetic

[R
ad

fo
rd

et
al

.
20

16
]

Generative Adversarial Networks (GAN) 60/84

Comparison: pixel space arithmetic

[R
ad

fo
rd

et
al

.
20

16
]

Generative Adversarial Networks (GAN) 61/84

Conditional GANs
cGAN idea
Condition G and D on some additional variable y . Feed y to both G and D.

[M
irz

a
et

al
.

20
14

]

Objective Function

min
G

max
D

Ex∼pdata [logD(x |y)] + Ez∼pprior [(1 − logD(G (z)|y))]

Generative Adversarial Networks (GAN) 62/84

Conditional GANs
cGAN idea
Condition G and D on some additional variable y . Feed y to both G and D.

[M
irz

a
et

al
.

20
14

]

Objective Function

min
G

max
D

Ex∼pdata [logD(x |y)] + Ez∼pprior [(1 − logD(G (z)|y))]

Generative Adversarial Networks (GAN) 62/84

Results of conditional GAN

[M
irz

a
et

al
.

20
14

]

Generative Adversarial Networks (GAN) 63/84

Conditioning on images

Image-to-Image Translation [Isola et al. 2017]
y is now an image we want to transform (sketch to object, day to night, B/W to
color...). Other formulation:

min
G

max
D

E(x,y)∼pdata [logD(x , y)] + Ey∼pdata,z∼pprior [(1 − logD(G (z , y)|y))]

+λEx,y ,z [∥x − G (z , y)∥1]

Additional term favors resemblence to true result and produces better results
[Pathak et al. 2014]

Generative Adversarial Networks (GAN) 64/84

Conditioning on images

[Is
ol

a
et

al
.

20
17

]

Generative Adversarial Networks (GAN) 65/84

Outline

1 Introduction

2 General Formulation

3 Very small reminder on Convolutional Neural Networks

4 Solving Inverse Problems for Images

5 Generative problems

6 Generative Adversarial Networks (GAN)

7 Denoising diffusion

8 Attention is all you need!

Denoising diffusion 66/84

Denoising Diffusion for Image synthesis: Dall-E 2

A still of Homer Simpson in The Blair Witch Project

Growing field
Dall-E 2 [Ramesh et al. 2022] - ∼ April; Stable Diffusion [Rombach et al. 2022]
∼ September (but also: Imagen...).
Dates back to: [Sohl-Dickstein et al. 2015] [Ho et al. 2020]

Denoising diffusion 67/84

Example of Midjourner Result (Sept 2023)

a group of crazy french students attending a a crazy professor teaching artificial

lecture on artificial intelligence intelligence to his students in France ; surrealist

Denoising diffusion 68/84

Principle

[R
am

es
h

et
al

.
20

22
]

2 stages:
Learn a CLIP (text+image) embedding for a caption
Generate an image from the image embedding

Denoising diffusion 69/84

CLIP [Radford et al. 2021]

[R
ad

fo
rd

et
al

.
20

21
]

Learns which caption goes with which image.

Denoising diffusion 70/84

Back to Dall-E

To build P(x |y)
Learns a prior P(zi |y) that produces CLIP image embeddings zi conditioned
on captions y .
Learns a decoder P(x |zi) or P(x |zi , y)

Key Ingredient
Diffusion-based data generation

Denoising diffusion 71/84

Diffusion-based data generation

ht
tp

s:
//

li
li

an
we

ng
.g

it
hu

b.
io

/p
os

ts
/2

02
1-

07
-1

1-
di

ff
us

io
n-

mo
de

ls
/

Blur an image until you get a noisy image, learn the reverse process

Denoising diffusion 72/84

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Diffusion Process

Given xO ∼ q(x0), generate a Markov chain by adding noise
p(xt |xt−1) = N (xt ;

√
αtxt−1, (1 −√

αt)I)

If the noise is large enough xT can be sampled using N (0, I)
Iteratively remove the noise by learning a model N (µ(xt),Σ(xt))
approximating the true posterior p(xt−1|xt)
Better: predict the added noise minimizing

Lsimple = Et∼[0,T],x0∼q(x0),ε∼N (0,I)[∥ε− εθ(xt , t)∥2]

Denoising diffusion 73/84

Some more details

Generate 64x64 images
Upsampling through two Diffusion-based upsampler models (256x256,
1024x1024).

Denoising diffusion 74/84

Results

[R
am

es
h

et
al

.
20

22
]

Denoising diffusion 75/84

Decoding an input image

[R
am

es
h

et
al

.
20

22
]

Denoising diffusion 76/84

Interpolation

[R
am

es
h

et
al

.
20

22
]

Denoising diffusion 77/84

Text differences

[R
am

es
h

et
al

.
20

22
]

Denoising diffusion 78/84

Some reading

The Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani,
Jerome Friedman, Springer, 2009.
Sparse Modeling for Image and Vision Processing, Mairal, Bach, Ponce,
Foundations and Trends in Computer Graphics and Vision, 2014.
Deep Learning, Goodfellow et al., MIT Press, 2016.
http://www.deeplearningbook.org/

Deep Learning, a visual approach, Andrew Glassner, 2021.

Denoising diffusion 79/84

http://www.deeplearningbook.org/

Outline

1 Introduction

2 General Formulation

3 Very small reminder on Convolutional Neural Networks

4 Solving Inverse Problems for Images

5 Generative problems

6 Generative Adversarial Networks (GAN)

7 Denoising diffusion

8 Attention is all you need!

Attention is all you need! 80/84

A different architecture: Transformers [Vaswani 2017]

State of the art technique in Natural Language Processing
Extended to Vision
Extended to Geometry
Extended to multi-modalities

A new and non local way to encode information
Build a summary representation (output) of a set of signals (values) relative to a
specific signal (query).

Attention is all you need! 81/84

A different architecture: Transformers [Vaswani 2017]

State of the art technique in Natural Language Processing
Extended to Vision
Extended to Geometry
Extended to multi-modalities

A new and non local way to encode information
Build a summary representation (output) of a set of signals (values) relative to a
specific signal (query).

Attention is all you need! 81/84

Attention

The output o is a weighted sum of the values vi , weights depending on the
query q

o =
∑
i

wivi and wi = softmax(qT vi)

More generic differentiate between values to aggregate and keys to compare:

o =
∑
i

wivi and wi = softmax(qTki)

Self-attention: Q=V
Transformer [vaswani 2017] based on encoding and decoding (+ multihead
attention + positional encoding).

Looks familiar?

Attention is all you need! 82/84

Vision Transformer

[D
os

ov
its

ky
i2

01
7]

Attention is all you need! 83/84

Vision Transformer - attentions

[D
os

ov
its

ky
i2

01
7]

Attention is all you need! 84/84

	Introduction
	General Formulation
	Very small reminder on Convolutional Neural Networks
	Solving Inverse Problems for Images
	Generative problems
	Generative Adversarial Networks (GAN)
	Denoising diffusion
	Attention is all you need!

