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@ Introduction
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Image versus geometry

lm R
J%ﬂw

1. com/photos/obeck/144795625/

licks

(©Obeck https://uww. £

(@)

Introduction 4/70
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Geometric data

140)
. X
.l‘__lh.’l 4 1 y]_.
X0 40 o377
V] ° °
K'Tk_’/ +1 o Vo °
Vo — W1

No grid structure.
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Sampling issues

Irregular Sampling, occlusions when scanning
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Geometric Deep Learning

@ No image-like grid structure

o What is a good representation for working on geometric data?

@ Various representations Meshes, Point sets...— Networks adapted to this
kind of data
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© Shape Analysis Architectures
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3D CNN

Input Depth Map Volumetric
(back of a sofa) Representation
- —
@ 3D ShapelNets !

4
3D ShapeNets

@ Represents a shape as a probability
distribution over a voxel grid.

! 4

sofa?
o Learns the model distribution over ‘d .®
resser? =>»
voxels+classes.
bathtub?

Shape Completion Next-Best-View Recognition

[Wa et al. 2015]
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3D CNN
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(b) Data-driven visualization: For each neuron, we average the top 100 training examples with 2

160 filters of
stride 2

48 filters of
stride 2

et al. 2015]

3D voxel input
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3D CNN - Shape completion

Input GT 3D ShapeNets Completion Result NN

[Wu et al. 2015]

=~
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(+padding

resolution: 24x24x2

Issue: extremely low
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Multiview CNN [Su 2015]

bathtub)
bed

o
H
DDHDD

dresser]|

toilet—

3D shape model
rendered with 2D rendered our multi-view CNN architecture
different virtual cameras images

Benefit from 2D convolution in a 3D-consistent manner.

output class
predictions

[Su et al. 2015]
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Multiview CNN [Su 2015]

query top 10 retrieved 3D shapes

ddde b SIS
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@ Render a mesh from several viewpoints L o PN # e SOc s a
(up to 80) | @ [ @ % (S =[]
@ Process each image separately through Tl R - 2
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[Su et al. 2015]

Multiview aggregation

o CNN features (or SIFT features) used as a vector description, min distance
between the view features

o View-pooling: take the maximum feature values per pixel across all
views.
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Multiview CNN [Su 2015]

Training Config. Test Config. Classification Retrieval
Method . " " . (Accuracy) (mAP)
Pre-train Fine-tune #Views #Views y

(1) SPH[16] - - - - 68.2% 33.3%
(2) LED [5] - - - - 75.5% 40.9%
(3) 3D ShapeNets [37] ModelNet40 ModelNet40 - - 77.3% 49.2%
(4) FV - ModelNet40 12 1 78.8% 37.5%
(5) FV, 12x - ModelNet40 12 12 84.8% 43.9%
(6) CNN ImageNet1K - - 1 83.0% 44.1%
(7) CNN, f.t. ImageNet]IK ModelNet40 12 1 85.1% 61.7%
(8) CNN, 12x ImageNet1K - - 12 87.5% 49.6%
(9) CNN, f.t.,12x ImageNet]1K ModelNet40 12 12 88.6% 62.8%
(10) MVCNN, 12x ImageNet1K - - 12 88.1% 49.4%
(11) MVCNN, fit., 12x ImageNet1K ModelNet40 12 12 89.9% 70.1%
(12) MVCNN, f.t.4+metric, 12x ImageNetlK ModelNet40 12 12 89.5% 80.2%
(13) MVCNN, 80x ImageNet1K - 80 80 84.3% 36.8%
(14) MVCNN, f.t., 80x ImageNetl1K ModelNet40 80 80 90.1% 70.4%
(15) MVCNN, f.t.+metric, 80x ImageNetlK ModelNet40 80 80 90.1% 79.5%

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

Shape Analysis Architectures

[Su et al. 2015]
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Meshes

ser:Chrschn

wikipedia, us:

@ When the data is represented as a mesh: there is some structure even if
irregular!

@ Mesh can be seen as a graph

@ Graph CNN

Meshes vs graphs J

Meshes are very special types of graphs, they define a manifold surface.
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Graph Neural Networks [Gori et al. 2005, Scarselli et al.
2005]

@ Message passing between neighboring nodes

@ Each nodes aggregates the messages and updates them

@ Per node task: process the resulting per-node feature vectors
°

Per graph task: aggregates the per-node feature vectors

TARGET NODE .4‘ —

ovec (Stanford)

INPUT GRAPH I

Image by Jure Lesk
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Aggregation function

@ For per-node aggregation: should be independent on the order (permutation
invariance)

@ In per-node tasks: the resulting vector should be permutation equivariant
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Aggregation function

@ For per-node aggregation: should be independent on the order (permutation
invariance)

@ In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions J

average, max, min, sum

Shape Analysis Architectures 17/70



Aggregation function

@ For per-node aggregation: should be independent on the order (permutation
invariance)

@ In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions

average, max, min, sum

Many GNN variants

Features can also be on edges (dual graph), or on both edges and vertices. Graph
CNN: convolution by a kernel gy = diag(6), U matrix of eienvectors of the
normalized graph laplacian.

go*x = UggUTx
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Graph Neural Networks — new version

Graph transformers

Transformer on graphs, large receptive field.

fa P
Multi-Head Attention

[Janny, Nadri, Digne, Thome, Wolf 2023]

@ Used in many machine learning-based physics simulation.

Shape Analysis Architectures
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MeshCNN [Hanocka et al. 2019]

@ Defines convolution and pooling layers on mesh edges.
@ Meshes are assumed manifold, possibly with boundary vertices.
@ Pooling prioritized by smallest edge feature.

p = avg(a.b.e)

a
pool unpool

[Hanoka et al ]

q=avgle.d.e)

Input Edge features  Convolution operation Pooling and unpooling
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MeshCNN - Convolution on edges

o Convolution: e * kg + Z?:l kie;
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MeshCNN - Convolution on edges

o Convolution: e * kg + Z?Zl kiej

o Ambiguity: ex kg + a* ky + bx ko + c * ks + d * kyq or
exkot+cxki+dxky+axks+ bxky
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MeshCNN - Convolution on edges

o Convolution: e * k0—|—2?:1 kie;
o Ambiguity: ex kg + a* ky + bx ko + c * ks + d * kyq or
exkot+cxki+dxky+axks+ bxky

@ Solution: work with (|a—c|,a+c,|d — b|,d + b)
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MeshCNN - Convolution on edges

Shape Analysis Architectures

o Convolution: e * kg + Z?Zl kiej

o Ambiguity: ex kg + a* ky + bx ko + c * ks + d * kyq or
exkot+cxki+dxky+axks+ bxky

@ Solution: work with (|a—c|,a+c,|d — b|,d + b)

@ Then usual 2d convolution on these “fake edge features”
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MeshCNN - Pooling on edges

p= avg(a b.e)
pool unpool
q= avg c,d,e)

input 600 450 300 150

I. 2019]

Shape Analysis Architectures

@ Not all edges can collapse: prevent

non-manifold faces creating edge collapses.

o Control the target mesh resolution by
setting the targer number of edges.

@ Store the history of pooling — can
reinstore the original mesh topology.
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MeshCNN: application to mesh classification

@ Add a global pooling layer and linear layers, after several meshcnn layers.

Cube Engraving Classification
H method input res test acc ”

= || MeshCNN 750 92.16% ||

[Hanocka et al. 2019]

o [[PointNetr+ 409  64.26% ||
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MeshCNN: application to mesh segmentation

@ Only meshcnn layers.

TIFES S8
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Point sets

@ No structure anymore
@ Missing data

@ Various number of points, point ordering can
change.
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PointNet [Qi 2017]

Principle

Affine transform per point followed by permutation invariant pooling on

channels

Classification Network

input
transform

input points
nx3

Shape Analysis Architectures

nx3

mlp (64,64)

feature mip (64,128,1024)

transform

shared

n|x 1088

mlp (512,256,128)

Segmentation Network

nx1024

shared

max mlp
pool 004 (512,256,k)

I
global feature i

output scores.

output scores

mlp (128,m)

[Qi et al. 2017]
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PointNet - An approximation theorem

@ Proof derives directly from the universal approximation theorem.

Shape Analysis Architectures

Theorem 1. Suppose f : X — R is a continuous
set function w.rt Hausdorff distance dg(-,-). Ve >
0, 3 a continuous function h and a symmetric function
g(@1,...,xy) =70 MAX, such that for any S € X,

'f(S) - (/gg{h(.r,)}ﬂ <e

where xy, x,, is the full list of elements in S ordered
arbitrarily, v is a continuous function, and MAX is a vector
max operator that takes n vectors as input and returns a
new vector of the element-wise maximum.
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PointNet - Results

Classification Network

input mip (64,64) feature mlp (64,128,1024) max il
E transform E: transform pool 1024 (512,256,%)
i8 |m ) S N3
;‘ g _’ <3 shared ?é \2 shared nx1024 —
i global feature
£ ; — Kk
I: 3 output scores
x: k 64x64. <
iraf\sfmm transform % = §
mx ‘matrix n (ERDES shared = shared g =
. o] :
SRR . . H
mlp (512,256,128) mlp (128,m)

Segmentation Network

Shape Analysis Architectures

[Qi et al. 2017
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PointNet - Results
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PointNet - Results

®
p-

Input
Point Cloud

pred

Semantic Segmentation

gP R

pred

BENDE
BN

Object Detection
——

GT

[Qi et al. 2017]
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PointNet - Results

! — }

7 mug B i #params | FLOPs/sample
RS ble? i PointNet (vanilla) | 0.8M 148M
) &/ s g PointNet 3.5M 440M 5
car? 7 f¢ | Subvolume [18] | 16.6M | 3633M °
Classification Part ion i i MVCNN [23] 60.0M 62057M g
Issues
Looses locality. Improved in PointNet++ (also in 2017). J
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Light Networks

@ Deep networks are expansive (large computation time and environmental
cost)

o PointNet is rather light
@ Combine pointnet + light 2D network to get competitive results for RGBD

segmentation.

Methods | InputType | GT | NbParam | 2Dbackbone | mloU

=
CMX* [29] RGB + Depth (HHA) 2D 66 M SegFormer-B2 513 g
RFBNet [36] RGB + Depth (HHA) 2D No info ResNet-50 62.6 2
Ours (LPointNet + U-Net34) RGB + Point cloud from Depth 2D 26 M ResNet-34 632 5"
SSMA [37] RGB + Depth (HHA) 2D 56 M AdaptNet++ 66.3 El
ShapeConv (28] RGB + Depth (HHA) 2D 58 M Deeplabv3+ 66.6 =
3D-to-2D distil [30] RGB + Point cloud 2D 66M ResNet-50 582 g
Ours (KPConv + U-Net34) RGB + Point cloud 2D 49M ResNet-34 63.8 g
BPNet* 2] RGB + Point cloud 2D/3D 96 M ResNet-34 64.4 k-
Ours (LPointNet + U-Net34) RGB + Point cloud 2D 26M ResNet-34 66.1 <
VirtualMVFusion [23] (single view) | RGB + Normals + Coordinates 3D Noinfo | xcpetion65 670 %
Ours (LPointNet + SegFormer-B2) RGB + Point cloud 2D 30M SegFormer-B2 69.0 E
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Dynamic Graph CNN [Wang 2019]

@ Builds a k-nearest neighbors graph

@ Defines an edge convolution

Idea J

Recompute the nearest neighbor graph in the feature space after each layer.
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DGCNN - Edge convolution

,,Q....Q

r,:

ho0) . . . . . ? EdgeCony. ",,. Ciis
EEEEER .//

[Wang et al. 2019]

o Compute an edge feature using an MLP on the channels of the end vertices

o Aggregate the edge features by permutation invariant pooling on each vertex
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DGCNN - Architecture

444
444
44+

EdgeConv I~ EdgeConv  —f . EdgeCov  —| |

output

feature concat.
&
multi-layer perceptron

= ¢ b

m

segmentation

[Wang et al. 2019]
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DGCNN - feature distance

TRy
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near

=
&
=
k]
?
z

S far

Shape Analysis Architectures 35/70



DGCNN - Results

PointNet

Ours Ground truth

[Wang et al. 2019]

Real color

Shape Analysis Architectures
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DGCNN - Results

I
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PointNet Ours Ground truth
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Diffusion is all you Need [Sharp 2022]

@ Representation agnostic model, based on diffusion on the shape

184,042

[Sharp 2022]
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Diffusion is all you Need

u € RY feature 4 obtained by pointwise MLP

° % = Ax(t)

Diffusion layer Hy(ug) = exp(tA)ug, use the Laplacian eigenbasis to reduce
computation load

To get non radially symmetric filters: add local gradient operators.
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Diffusion is all you Need - Results

DiffusionNet

N

recent
methods

same

I Hx

. T

v v g
4 g " &
J J DiffusionNet |5
original mesh after remeshing on point cloud &
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Diffusion is all you Need - Results

[Sharp 2022]

ground truth mesh prediction point cloud prediction

41/70
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Outline

© Generative Models for Shape Synthesis
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But: only for static geometry

How do we cope with generative tasks
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An example for generating shapes [GRASS, Li et al. 2017]

[Li et al. 2017)

@ Input data: set of shapes with a semantic segmentation into parts.
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Algorithm

@ Step 1: Learn a code representing an arrangement of boxes.
@ Step 2: Train a GAN for generating a new structure

@ Step 3: Use voxelization in each box to synthesize the local geometry.

real
structures

32 part
vorelization 320

o o T
oot e random nase
O. o
o_Q O o Q
o_©o_0 O l
‘J u GUO i °

a’
ol =
RVNN encoder  RVNN decoder

generated

0%
go° |

fo¥eleXe}

Q
hel
o

real
goneratea =

Generator *"““"** Discriminator parts
part code part code
(a) RYNN auto-encoder pre-training (b) RYNN-GAN training (c) Volumetric part geometry synthesis

[Li et al. 2017]
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Step 1: Learn a code

Key idea

Shape components are commonly arranged or perceived to be arranged
hierarchically. Goal of the code: encode this hierarchy of parts

5
E
g

Recursive auto-encoder for binary trees: encode the structure into a code;
decode and compare the recovered structure.

Recursively merge parts that are either adjacent or symmetric (rotational,
translational, reflectional)

Training: generate plausible hierarchies for each shape (sample the space of
plausible part groupings)

Adjacency and Symmetry encoder/decoder (transform a code into another
encodes the symmetry and the generator)

Additionally: Box encoder/Node classifier
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Learned hierarchies

[Li et al. 2017)

In a nutshell

Transform a binary tree into a meaningful hierarchy while minimizing the loss
(sum of bounding boxes distances)
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Etape 2: encoder-decoder model for generation

= 7] . = @
B & 5 8 1
H — a8 I N o
o o = 2 e 2
o e = 9 s |0 —a
F @ [ a| = & “\I E
£ B/ = — real - B\le | & &5
S @ H =4 8 .5
2 [=} : = 8 —
& =\ @ — — =/8 | &
Q a E o = s 2 o 9 il
i E—: |8 ¢ 5 B —i
‘S — 8 |-+ TS ®
- = q 3 8 ]
3| & V= ERE- 5 _
a y 5 5
= Bl g
Generator network generated Discriminator network M
a

o |dea: adversarial training: the generator tries to fool the discriminator which
in turns tries to detect generated pairs.

@ Prior structure for the input to the generator (sample from the set of input
and generated output hierarchies for the auto-encoder + other tricks)
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Etape 3: geometry synthesis

Training
326262 input % o

art volume 32FC
p: u 3840

training t
parts

T
SARF code

T
SARF code

Testing

32x32x32 output
32D part volume

[Li et al. 2017)

@ Goal: synthesize a coherent voxel grid for each bounding box representing the

fine-grained geometry

@ Take into account both the geometry of the bouding box and its context

Generative Models for Shape Synthesis
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Contextual description and final synthesis

H Concatenated code
[[oooo‘ooooJ[oooo‘oooo][oooo‘coooﬂ
s s

(©0000000) (©ooco000) |

Rl

/
(c650) (66660660) (60066006060)

H I e

(co0co) (00000000) (00000000)

o I

[Li et al. 2017)
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Application: interpolation

[Li et al. 2017)
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Application: shape query
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MeshGPT [Siddigi et al. 2023] - released 3 days ago!

ARy Ng

= N :
£
edding
" R S - odebool MeshGPT: Autoregressive Mesh Generation
J B
S~ oken Decoder j l S S
Vocabulary Learning. ‘ l

o Following text generation idea: generate a mesh as a sequence of triangles

5
5]
K
g
3
2
z
5
&

[Siddiqi et al. 2023]

Generative Models for Shape Synthesis
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MeshGPT - Principle

@ Learns a vocabulary of latent representations
of faces

Input Mesh

@ Uses these latent representations as tokens

o GPT-like transformer: predicts next token
from previous tokens auto-regressively.

@ 1D Resnet decodes the latent representation
sequences into triangles

Residual Face Quantization Module

[Siddiqi et al. 2023]
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MeshGPT - Architecture details

@ Graph CNN encoder on the graph of faces (each face = a node) learns a
latent per face representation, input features: vertex coordinates
(9-dimensional).

@ SAGE convolution layer: samples neighborhood and aggregates features from
it. For a mesh of N faces:

Z=(z1,-- ,2n)

@ Residual Vector Quantization: quantization on a primary codebook, residuals
quantized on a secondary codebook... Yields a codebook and D codes per
face (with additional tricks)

T=(t1, - ,tn); t; = t,’ index of an embedding in the codebook.

@ Decoder (1d resnet ) G decodes the token into 9 coordinates.
o Codebook and graph encoder given to the transformer using T as a sequence.

Result

Resuls is a triangle soup: needs post-processing to turn it into a watertight mesh
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MeshGPT - Results

A B g

AtlasNet BSPNet GET3D GET3D-QEM

[Siddigi et al. 2023]
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MeshGPT - Results
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Outline

@ Machine Learning and Surface Reconstruction
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Machine learning based surface reconstruction

o Needs a differentiable pipeline
@ Challenge: intrinsically a combinatorial problem...

@ Not necessarily example-based: surface reconstruction can be done per shape.
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AtlasNet [Groueix 2019]

Generated
Latent shape 3D point

representation
— mep | —— &8 \
2ot 2/
2D point

@ Some definitions:

[Groueix 2019]

» A manifold surface S in R3 is topological set such that each point has a
neighborhood which is homeomorphic to an open disk of mathbbR?.

> Local map (or chart):s a homeomorphism ¢ from an open subset U of S to an
open subset of R?.

» Atlas:a indexed family of local charts (U;, ¢;) from U; to open subsets of R?;
such that the U;s cover S.

Parameterization

This is the base for surface parameterization problems in geometry processing: Try
to unwrap a surface onto a planar patch (usually a square).
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AtlasNet [Groueix 2019]

@ Model the local maps as affine maps, they can be inverted if they are full
rank.

@ A RelLU-based MLP computes a piecewise affine map (full rank). This is due
to ReLU activation.

o Start with N patches and compute their deformation onto the surface (Papier
méaché). Deformed patches may overlap.
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AtlasNet for surface reconstruction

o Start with a latent representation x of a shape

e For a set of points A of points sampled in [0, 1]?, we optimize the weights 6;
of N functions (MLP) f,,

@ Sample a set Sy of M points on the surface S
@ Chamfer Loss

N
> min fs,(px) = ql3+ Y min min [y (p,x) - ql|®
ped i=1 5P ges, TP
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Result

' g
2DTmage ) _")
Wkt &

3D Point Cﬁd \\/ d-- g an

(a) Possible Inputs  (b) Output Mesh from the 2D Image (c) Output Atlas (optimized) (d) Textured Output (e) 3D Printed Output

[Groueix et al. 2019]
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Results: reconstruction from single view

-

-

!
w
N
4
=

4
=
¥

[

(a) input (b) 3D-R2N2 (c) PSG

Machine Learning and Surface Reconstruction

(d) Ours

[Groueix et al. 2019]
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Differentiable Surface Reconstruction [Rakotosaona 2021]

[Shewchuck 2003]

o A set of points v; € R? with weights w;

o Weighted Delaunay Triangulation: projected lower envelop of points
(v, 1[I = wy) € RI*H

@ Any 2D (d = 2) triangulation can be obtained as a perturbation of a 2d
Weighted Delaunay Triangulation.
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Differentiable weighted Delaunay triangulation in 2D

o All possible triangles with vertices in V' are given an inclusion score e;.

o defs: ¢; circumcenter of triangle i = {j, k, I}, aj); reduced Voronoi cell of
vertex j onto triangle i. Then

1 if g e€ay Vxe{j,kl}
e = .
0 otherwise

@ Continuous inclusion score

sijj = o(ad(c;, aj)i)) (o sigmoid)

1
Si = g(s,"j + Silk + Si‘/)
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Differentiable weighted Delaunay triangulation in 2D

Intersection of half planes Hj<x = {x € R?|||x — vj||> — w; < [|x — vi||? — wi}

Weighted Voronoi cell a¥ J

o redefine: ¢; weighted circumcenter of triangle i = {j, k, /}, a;|; reduced
weighted Voronoi cell of vertex j onto triangle i.

@ Same expression for the continuous inclusion score
_ Cw . .
sijj = o(ad(ci, aj};)) (o sigmoid)

1
Si = g(si\j + Sijk =+ sijr)
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Turning 3D triangulation problems into 2d triangulation
problems

@ Segment 3D shapes into developable sets by Least Squares Conformal Maps
[Levy 2008].

o Differentiable 2D meshing on each of the sets with boundary constraints.

BLEE &

e

3

N

S_azgs a[auel 3

S
optimize for given edge directions

wwo i ? Y YeTIOx

>

from [Rakotosaona 2021]
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Losses
@ Area prescribing loss (A: function on the surface):

Lo = 5= (505 = ) % (v = )| = A(v)

iJ Silj i

o Boundary preservation Ioss:
Ly(V,P)= v Zexp(s min(e, (v; — bj) - n; )

@ Other possible losses: angle Ioss, curvature alignment loss.

triangle size li
input [Loseille 2017] ours target sizes input [Jakob et al. 2015] ours target directions
p =

o
e
i
141
138
0.57/0.40

Machine Learning an:] Surface Reconltructlon

0.69/0.46 . . 7.49/6.98

0.60/0.49

from [Rakotosaona 2021]
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Conclusion

@ Very small overview of geometric deep learning

@ In particular, it's missing the nice definitions of equivariant convolutions or
methods based on the bundle Laplacian.

@ Missing also implicit surfaces: next time
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