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Image versus geometry
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Geometric data
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No grid structure.
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Sampling issues

Irregular Sampling, occlusions when scanning
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Geometric Deep Learning

No image-like grid structure
What is a good representation for working on geometric data?
Various representations Meshes, Point sets...→ Networks adapted to this
kind of data
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3D CNN

3D ShapeNets
Represents a shape as a probability
distribution over a voxel grid.
Learns the model distribution over
voxels+classes.
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3D CNN
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3D CNN - Shape completion
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Issue: extremely low resolution: 24x24x24 (+padding)
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Multiview CNN [Su 2015]
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Benefit from 2D convolution in a 3D-consistent manner.
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Multiview CNN [Su 2015]

Render a mesh from several viewpoints
(up to 80)
Process each image separately through
a CNN
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Multiview aggregation
CNN features (or SIFT features) used as a vector description, min distance
between the view features
View-pooling: take the maximum feature values per pixel across all
views.
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Multiview CNN [Su 2015]
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Meshes
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When the data is represented as a mesh: there is some structure even if
irregular!
Mesh can be seen as a graph
Graph CNN

Meshes vs graphs
Meshes are very special types of graphs, they define a manifold surface.
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Graph Neural Networks [Gori et al. 2005, Scarselli et al.
2005]

Message passing between neighboring nodes
Each nodes aggregates the messages and updates them
Per node task: process the resulting per-node feature vectors
Per graph task: aggregates the per-node feature vectors
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Aggregation function

For per-node aggregation: should be independent on the order (permutation
invariance)
In per-node tasks: the resulting vector should be permutation equivariant

Permutation-invariant functions
average, max, min, sum

Many GNN variants
Features can also be on edges (dual graph), or on both edges and vertices. Graph
CNN: convolution by a kernel gθ = diag(θ), U matrix of eienvectors of the
normalized graph laplacian.

gθ ⋆ x = UgθU
T x
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Graph Neural Networks – new version

Graph transformers
Transformer on graphs, large receptive field.
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Used in many machine learning-based physics simulation.
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MeshCNN [Hanocka et al. 2019]

Defines convolution and pooling layers on mesh edges.
Meshes are assumed manifold, possibly with boundary vertices.
Pooling prioritized by smallest edge feature.

Input Edge features Convolution operation Pooling and unpooling
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MeshCNN - Convolution on edges

Convolution: e ∗ k0 +
∑4

i=1 kiei

Ambiguity: e ∗ k0 + a ∗ k1 + b ∗ k2 + c ∗ k3 + d ∗ k4 or
e ∗ k0 + c ∗ k1 + d ∗ k2 + a ∗ k3 + b ∗ k4

Solution: work with (|a− c |, a+ c , |d − b|, d + b)

Then usual 2d convolution on these “fake edge features”
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MeshCNN - Pooling on edges
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Not all edges can collapse: prevent
non-manifold faces creating edge collapses.
Control the target mesh resolution by
setting the targer number of edges.
Store the history of pooling → can
reinstore the original mesh topology.
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MeshCNN: application to mesh classification

Add a global pooling layer and linear layers, after several meshcnn layers.
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MeshCNN: application to mesh segmentation

Only meshcnn layers.

[H
an

oc
ka

et
al

.
20

19
]

Shape Analysis Architectures 23/70



Point sets

No structure anymore
Missing data
Various number of points, point ordering can
change.
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PointNet [Qi 2017]

Principle
Affine transform per point followed by permutation invariant pooling on channels
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PointNet - An approximation theorem

Proof derives directly from the universal approximation theorem.
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PointNet - Results
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PointNet - Results
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PointNet - Results
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PointNet - Results
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Issues
Looses locality. Improved in PointNet++ (also in 2017).
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Light Networks

Deep networks are expansive (large computation time and environmental
cost)
PointNet is rather light
Combine pointnet + light 2D network to get competitive results for RGBD
segmentation.
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Dynamic Graph CNN [Wang 2019]

Builds a k-nearest neighbors graph
Defines an edge convolution

Idea
Recompute the nearest neighbor graph in the feature space after each layer.
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DGCNN - Edge convolution
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Compute an edge feature using an MLP on the channels of the end vertices
Aggregate the edge features by permutation invariant pooling on each vertex
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DGCNN - Architecture
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DGCNN - feature distance
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DGCNN - Results
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DGCNN - Results
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Diffusion is all you Need [Sharp 2022]

Representation agnostic model, based on diffusion on the shape
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Diffusion is all you Need

u ∈ RV feature + obtained by pointwise MLP
∂x
∂t = ∆x(t)

Diffusion layer Ht(u0) = exp(t∆)u0, use the Laplacian eigenbasis to reduce
computation load
To get non radially symmetric filters: add local gradient operators.
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Diffusion is all you Need - Results
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Diffusion is all you Need - Results
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But: only for static geometry

How do we cope with generative tasks
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An example for generating shapes [GRASS, Li et al. 2017]
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Input data: set of shapes with a semantic segmentation into parts.
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Algorithm

Step 1: Learn a code representing an arrangement of boxes.
Step 2: Train a GAN for generating a new structure
Step 3: Use voxelization in each box to synthesize the local geometry.
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Step 1: Learn a code
Key idea
Shape components are commonly arranged or perceived to be arranged
hierarchically. Goal of the code: encode this hierarchy of parts
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Recursive auto-encoder for binary trees: encode the structure into a code;
decode and compare the recovered structure.
Recursively merge parts that are either adjacent or symmetric (rotational,
translational, reflectional)
Training: generate plausible hierarchies for each shape (sample the space of
plausible part groupings)
Adjacency and Symmetry encoder/decoder (transform a code into another
encodes the symmetry and the generator)
Additionally: Box encoder/Node classifier
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Learned hierarchies
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In a nutshell
Transform a binary tree into a meaningful hierarchy while minimizing the loss
(sum of bounding boxes distances)
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Etape 2: encoder-decoder model for generation
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Idea: adversarial training: the generator tries to fool the discriminator which
in turns tries to detect generated pairs.
Prior structure for the input to the generator (sample from the set of input
and generated output hierarchies for the auto-encoder + other tricks)
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Etape 3: geometry synthesis
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Goal: synthesize a coherent voxel grid for each bounding box representing the
fine-grained geometry
Take into account both the geometry of the bouding box and its context
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Contextual description and final synthesis
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Application: interpolation
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Application: shape query
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MeshGPT [Siddiqi et al. 2023] - released 3 days ago!
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Following text generation idea: generate a mesh as a sequence of triangles
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MeshGPT - Principle
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Learns a vocabulary of latent representations
of faces
Uses these latent representations as tokens
GPT-like transformer: predicts next token
from previous tokens auto-regressively.
1D Resnet decodes the latent representation
sequences into triangles

Generative Models for Shape Synthesis 54/70



MeshGPT - Architecture details
Graph CNN encoder on the graph of faces (each face = a node) learns a
latent per face representation, input features: vertex coordinates
(9-dimensional).
SAGE convolution layer: samples neighborhood and aggregates features from
it. For a mesh of N faces:

Z = (z1, · · · , zN)

Residual Vector Quantization: quantization on a primary codebook, residuals
quantized on a secondary codebook... Yields a codebook and D codes per
face (with additional tricks)

T = (t1, · · · , tN); ti = t ji index of an embedding in the codebook.

Decoder (1d resnet ) G decodes the token into 9 coordinates.
Codebook and graph encoder given to the transformer using T as a sequence.

Result
Resuls is a triangle soup: needs post-processing to turn it into a watertight mesh
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MeshGPT - Results
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MeshGPT - Results
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Machine learning based surface reconstruction

Needs a differentiable pipeline
Challenge: intrinsically a combinatorial problem...
Not necessarily example-based: surface reconstruction can be done per shape.
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AtlasNet [Groueix 2019]
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Some definitions:
▶ A manifold surface S in R3 is topological set such that each point has a

neighborhood which is homeomorphic to an open disk of mathbbR2.
▶ Local map (or chart):s a homeomorphism φ from an open subset U of S to an

open subset of R2.
▶ Atlas:a indexed family of local charts (Ui , ϕi ) from Ui to open subsets of R2;

such that the Ui s cover S.

Parameterization
This is the base for surface parameterization problems in geometry processing: Try
to unwrap a surface onto a planar patch (usually a square).
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AtlasNet [Groueix 2019]

Model the local maps as affine maps, they can be inverted if they are full
rank.
A ReLU-based MLP computes a piecewise affine map (full rank). This is due
to ReLU activation.
Start with N patches and compute their deformation onto the surface (Papier
mâché). Deformed patches may overlap.
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AtlasNet for surface reconstruction

Start with a latent representation x of a shape
For a set of points A of points sampled in [0, 1]2, we optimize the weights θi
of N functions (MLP) fθi
Sample a set Sd of M points on the surface S
Chamfer Loss

∑
p∈A

N∑
i=1

min
q∈SD

∥fθi (p, x)− q∥2
2 +

∑
q∈Sd

min
i=1···N

min
p∈A

∥fθi (p, x)− q∥2
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Result
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Results: reconstruction from single view
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Differentiable Surface Reconstruction [Rakotosaona 2021]
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A set of points vj ∈ Rd with weights wj

Weighted Delaunay Triangulation: projected lower envelop of points
(vj , ∥vj∥2 − wj) ∈ Rd+1

Any 2D (d = 2) triangulation can be obtained as a perturbation of a 2d
Weighted Delaunay Triangulation.
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Differentiable weighted Delaunay triangulation in 2D

All possible triangles with vertices in V are given an inclusion score ei .
defs: ci circumcenter of triangle i = {j , k , l}, ai|j reduced Voronoi cell of
vertex j onto triangle i . Then

ei =

{
1 if ci ∈ ax|i ∀x ∈ {j , k , l}
0 otherwise

Continuous inclusion score

si|j = σ(αd(ci , aj|i )) (σ sigmoid)

si =
1
3
(si|j + si|k + si|l)
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Differentiable weighted Delaunay triangulation in 2D

Weighted Voronoi cell aw

Intersection of half planes Hj≤k = {x ∈ R2|∥x − vj∥2 − wj ≤ ∥x − vk∥2 − wk}

redefine: ci weighted circumcenter of triangle i = {j , k , l}, ai|j reduced
weighted Voronoi cell of vertex j onto triangle i .
Same expression for the continuous inclusion score

si|j = σ(αd(ci , a
w
j|i )) (σ sigmoid)

si =
1
3
(si|j + si|k + si|l)
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Turning 3D triangulation problems into 2d triangulation
problems

Segment 3D shapes into developable sets by Least Squares Conformal Maps
[Lévy 2008].
Differentiable 2D meshing on each of the sets with boundary constraints.
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Losses
Area prescribing loss (A: function on the surface):

Larea =
1∑
i,j si|j

∑
i,j

(
1
2
∥(vj − vk)× (vl − vk)∥ − A(vj))

Boundary preservation loss:

Lb(V ,P) =
1
|V |

∑
j

exp(ε−min(ε, (vj − bj) · nbj ))

Other possible losses: angle loss, curvature alignment loss.
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Conclusion

Very small overview of geometric deep learning
In particular, it’s missing the nice definitions of equivariant convolutions or
methods based on the bundle Laplacian.
Missing also implicit surfaces: next time
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