
Implicit neural representations

Julie Digne

Master ID3D
LIRIS - CNRS

Équipe Origami

14/12/2023

1/63



The implicit alternative

Instead of computing a triangulation, optimize an implicit field
The implicit field is modeled by a neural network.
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Neural Radiance Field (Nerf [Mildenhall et al. 2020]

Goal: Generate a new view from a set of views
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Principle
Neural network takes as input a 3D coordinate and viewing direction and outputs
the volume density and view-dependent emitted radiance at this location and
direction.

Cameras are calibrated (ie we know their positions, orientations and intrinsic
parameters)
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Training

Neural net FΘ : (x , y , z , θ, ϕ)→ (R,G ,B, σ): Fully connected layers
Volume rendering by querying along viewing directions.
Sampling along the rays to estimate the rendering integral
Comparison with the ground truth color on the target image
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More tricks

Add a positional encoding to improve high resolution details
View-dependent radiance is what allows to capture mirror reflections
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Results

Video: https://www.matthewtancik.com/nerf

Training time
The optimization for a single scene typically take around 100– 300k iterations to
converge on a single NVIDIA V100 GPU (about 1–2 days). (Faster variants
released since: Instant NGP [Mueller 2022])
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Implicit neural field

Model the signed distance field u(x , y , z) = MLPθ(x , y , z) with θ the MLP
parameters.

Signed distance field u to a surface S satisfies the Eikonal equation:

∥∇u∥ = 1 with u(x) = 0 ∀x ∈ ∂S

Since a MLP is differentiable use the Eikonal equation as a loss function
[Gropp 2020]
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Optimization Process

Input data a set of points (xi , ni ), i ∈ I

Look for u continuous and a.e. C1 such that: ∥∇u∥ = 1
u|∂Ω = 0

∇u|∂Ω] = n
(1)

Loss [Gropp 2020]

l(θ) =
1
|I |

∑
i∈I

(|uθ(xi )|+ τ∥∇uθ(xi )− ni∥) + λEx [(∥∇uθ(x)∥ − 1)2]
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Periodic Activation Functions [Sitzmann 2021]
Replace ReLU by periodic activation function x → sin(ωx). Better
differentiability
Loss:

Lsdf =
1
|I |

∑
i∈I

(|uθ(xi )|+ τ∥∇uθ(xi )− ni∥)

+ λEx [(∥∇uθ(x)∥ − 1)2] + λ2Ex /∈Ω[(∥ψ(uθ(x)∥]

with ψ(uθ(x)) = exp−α|uθ(x)|; α >> 1

Fr
om

[S
itz

m
an

n
20

20
]
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Periodic Activation Functions [Sitzmann 2021]
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Implicit displacement field [Yifan 2022]

Smooth surface 

d

Detailed surface

Decompose the surface into a smooth base and a displacement field
Both the smooth surface and the displacement field are learned
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Overview

[Y
ifa

n
20

22
]
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Implicit displacement field - definition

[Y
ifa

n
20

22
]

Definition
Smooth base SDF f , detailed SDF f̂ , an implicit displacement field (IDF)

f (x) = f̂ (x + d(x)n), where n =
∇f (x)
∥∇f (x)∥

Learning - naive version
Minimize at query points x ∈ R3: |f (x)− fGT (x̂)| with x̂ = x + d(x)n
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Inverse implicit displacement field

[Y
ifa

n
20

22
]

Alternative
Inverse Displacement Mapping d̂ : f (x + d̂(x̂)n) = f̂ (x̂)

One can use n̂ = ∇f (x̂)
∥∇f (x̂)∥ instead of n̂ = ∇f (x̂)

∥∇f (x̂)∥ (error is theoretically
bounded)
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Architecture and training
Two SIREN networks, with different ω parameters (one low - base, one high -
idf)

Composed distance field

f (x) = NωB
(x)

f̂ (x) = NωB
(x + χ(f (x))NωD

(x)
∇f (x)
∥∇f (x)∥

)

where χ is an attenuation function

Loss

Lf̂ =
∑
x∈R3

λ0|∥∇f̂ (x)∥ − 1|+
∑

(p,n)∈∂Ω

(λ1|f̂ (p)|+ λ2(1− ⟨∇f̂ (p), n⟩))

+
∑
x∈R3

λ3 exp(−100f̂ (x))
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Results - Surface decomposition

[Y
ifa

n
20

22
]
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Detailed surface reconstruction

[Y
ifa

n
20

22
]
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Detail transfer

[Y
ifa

n
20

22
]
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Detail transfer results

[Y
ifa

n
20

22
]
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Regularizing INR away from the surface

[Clémot, Digne 2023]
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Medial Axis

Definition
A point p belongs to the medial axis of a compact shape if it has at least two
distinct nearest neighbors on the shape surface.
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Overview

INR training
Point set with

oriented normals
Uniform

surface points
Skeletal points Skeletal complex

MILP solving
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Eikonal Equation

Infinite number of solutions
Viscosity solution theory: allows to select
the right solution
Use smooth eikonal equation (not practical
[Lipman 2019])

∥∇u∥ − ε∆u = 1

Consequence: blobs appear

[C
am

ill
i
20

14
]

Infinite nber of solutions
Not an issue close to the surface – but far away?
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Which neural network?

MLP (6 layers, 128-256 neurons/layer) with
ReLU activation functions
ReLU yields a function in W 1,p [Lipman
2019]
But: not always easy to train
Sitzman (2021) replaces ReLU with sine
activation function: smooth function

IGR SIREN

u
∥∇

u
∥

∥∇
∥∇

u
∥∥
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TV regularization - some theory

Look for a smooth surrogate for the signed distance function
Medial axis: zeros of the gradient
The TV term favors that u has no second order differential content along the
gradient lines

Since ∇u = (ux , uy , uz), it follows:

∇∥∇u∥ = ∇
√
u2
x + u2

y + u2
z

=
1

2∥∇u∥

2uxuxx + 2uyuxy + 2uzuxz
2uxuxy + 2uyuyy + 2uzuyz
2uxuzx + 2uyuzy + 2uzuzz


= Hu

∇u
∥∇u∥
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Total loss

Eikonal loss:
Leikonal =

∫
R3

(1− ∥∇u(p)∥)2 dp (2)

Surface loss:

Lsurface =

∫
∂Ω

u(p)2dp +

∫
∂Ω

1− n(p) · ∇u(p)
∥n(p)∥ ∥∇u(p)∥

dp (3)

Learning point loss

Llearning =
∑
p∈P

(u(p)− d(p))2 +
∑
p∈P

1− ∇u(p) · ∇d(p)
∥∇u(p)∥ ∥∇d(p)∥

(4)

+ TV loss

Loss

L = λeLeikonal + λsLsurface + λlLlearning + λTVLTV (5)
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Convergence

0 10 20 30 40 50
Epochs

10 2

10 1

100

101 Point cloud loss (0.01)
Eikonal loss (0.01)
Learning points loss (0.00)
Total variation loss (1.07)
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Resulting Fields
Ours

0% 0.5% 1% 2%
SD
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∥∇u∥
Ours

0% 0.5% 1% 2%

IGR

Siren
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∇∥∇u∥

Ours
0% 0.5% 1% 2%

Siren
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then...

GPU skeleton tracing to extract points on the skeleton
Select a subset based on the Coverage Axis method [Dou 2022]

▶ N points xi , M skeletal points si with distance ri to the surface.
▶ Coverage matrix: D (N ×M)

Dij = 1 if ∥pi − sj∥ − rj ≤ δ and 0 otherwise

▶ Mixed Integer Linear Problem:

min ∥v∥2

s.t. Dv ⪰ 1 (6)

Link the selected points by computing the regular triangulation of weighted
skeletal points and surface points + keep simplices between skeletal points
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Results
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Results

0%
0.
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03

%

Ours Coverage Axis L1-medial skeleton
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Results

Ours Coverage Ours Coverage
Axis Axis
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With noise
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With noise
0% 0.5% 1% 2%
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Projecting points on the surface [Yifan 2021]

Sample points on a neural implicit
Use them to improve robustness and
accuracy

[Y
ifa

n
20

21
]
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Projection on the surface

[Y
ifa

n
20

21
]

Starting from a point q0 in R3 project it on the surface
Newton Iterations: qk+1 = qk − J+f (qk)fθ(qk) with J+f (qk) =

1
∥Jf (qk )∥2 Jf (qk)

For nonsmooth fields, set an upper threshold for the displacement magnitude
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Uniform resampling

[Y
ifa

n
20

21
]

Move the points away from dense areas q̃ ← q̃ − αr
α step size
r =

∑
q̃
i∈N (q̃) w(q̃ i , q̃)

q̃
i−q̃

∥q̃
i−q̃∥
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Upsampling

[Y
ifa

n
20

21
]

Move the points away from the edges (Edge-away resampling [Huang 2011])
Each point is :

▶ attracted to points that have a similar normal
▶ repulsed from dense areas.

Upsampled points are reprojected on the surface
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Application to INR fitting regularization

[Y
ifa

n
20

21
]

Warmup training (300 iterations)
Extract isopoints + add isopoints to data points
Update the isopoints every 1000 iterations
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Arithmetic Queries [Sharp 2022]

[S
ha

rp
20

22
]

fθ a neural implicit Not necessarily a signed distance field.
Sphere tracing for SDF, interval arithmetic for general implicit field.
Goal: adapt interval arithmetic for neural implicits.
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Affine arithmetic [Comba and Stolfi 1993]

[S
ha

rp
20

22
]

Interval arithmetic gives loose bounds
Affine arithmetic: tracks affine coefficients through computation
Similar to forward auto-diff: linear operations, nonlinear operations by
linearization (adds affine coefficients!)

MLP
Affine operations followed by ReLU nonlinearity
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Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|

<2>ŷ = f (x̂) = αx0 + β +
∑N

i=1 αxiεi + γεN+1

Each layer with width W adds W new coefficients.

Solution
Periodically replace a set of coefficients with a single new coefficients

condense(x̂ ,D) = x0 +
∑
i /∈D

xiεi + (
∑
i∈D

|xi |)εN+1

Querying Neural implicits 49/63



Nonlinearities

x̂ = x0 +
∑N

i=1 xiεi εi ∈ [−1, 1]

Replace f by a linear approximation f̂ (x) ≈ αx + β

γ = maxx∈range(x̂) |f (x)− f̂ (x)|
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Range bounds

[S
ha

rp
20

22
]

Unknown?
Subdivide the box.
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Ray casting vs frustum ray casting

[S
ha

rp
20

22
]
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Applications

Mesh extraction Closest point

Mesh Intersection

[S
ha

rp
20

22
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Example-based shape reconstruction

Deep SDF [Park 2019] learns a shape signature and deduces an implicit field
(auto-decoder)
Occupancy Network [Mescheder 2019] encoder-decoder to learn the
occupancy (binary field).
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DeepSDF

[P
ar

k
20

19
]

Represent an entire class of shapes in an implicit way
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Training

[P
ar

k
20

19
]

Single shape version

L(fθ(x), s) = |clamp(fθ, δ)− clamp(x , δ)|

with clamp(x , δ) = min(δ,max(−δ, x)), s isovalue.
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Training

[P
ar

k
20

19
]

Latent shape version

fθ(zi , x) = SDF i (x)

Model several distance fields with a single network (factor in shape space)
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Auto-decoder

[P
ar

k
20

19
]

Usually: train an auto-encoder + throw away the encoder.
Here: avoid spending computational resources on encoder.
Handle shapes of different number of samples.
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Model for the auto-decoder

Data: N shapes Xi = {(xj , sj), sj = SDF i (xj)}.
Latent code zi , prior p(zi ) = centered Gaussian with spherical covariance.

pθ(zi |Xi ) = p(zi )
∏
j

pθ(sj |zi , xj)

Reformulation:

p(sj |zi , xj) = exp(−L(fθ(zi , xj), sj)) with fθ an MLP.

Training

argminθ,{zi}N
i=1

N∑
i=1

K∑
j=1

L(fθ(zi , xj), sj) +
1
σ2 ∥zi∥

2
2
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Network architecture

[p
ar

k
20

19
]
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results

[p
ar

k
20

19
]

solve for the shape code from partial shapes and reconstruct
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results

[p
ar

k
20

19
]
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Conclusion

Overview of Machine Learning methods
Field changes every day!
Some new tools useful even without a database
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