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The implicit alternative

o Instead of computing a triangulation, optimize an implicit field

@ The implicit field is modeled by a neural network.
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Outline

© NeRF
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Neural Radiance Field (Nerf [Mildenhall et al. 2020]

e Goal:

NeRF
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Optimize NeRF

Generate a new view from a set of views

Render new views
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Principle
Neural network takes as input a 3D coordinate and viewing direction and outputs
the volume density and view-dependent emitted radiance at this location and

direction.

o Cameras are calibrated (ie we know their positions, orientations and intrinsic

parameters)
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Training

5D Input Output Volume Rendering
Position + Direction I][ll] Color + Density Rendering Loss
(x3.z.0.0)— —(RGBa)
.r’ F_ Rar 2 40_\ b /\4 2
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o Neural net Fg : (x,y,2,0,0) — (R, G, B,5): Fully connected layers
@ Volume rendering by querying along viewing directions.

@ Sampling along the rays to estimate the rendering integral

o Comparison with the ground truth color on the target image

NeRF
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More tricks

@ Add a positional encoding to improve high resolution details
o View-dependent radiance is what allows to capture mirror reflections

-

L O ©
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No View Dependence No Positional Encoding

Complete Model

NeRF
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Results

Ground Truth  NeRF (ours) LLFF 28]

Video: https://www.matthewtancik.com/nerf
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Results

NeRF (ours) LLFF

Video: https://www.matthewtancik.com/nerf

Training time

The optimization for a single scene typically take around 100— 300k iterations to
converge on a single NVIDIA V100 GPU (about 1-2 days).
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Results

Video: https://www.matthewtancik.com/nerf

Training time

The optimization for a single scene typically take around 100— 300k iterations to
converge on a single NVIDIA V100 GPU (about 1-2 days). (Faster variants
released since: Instant NGP [Mueller 2022])
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Implicit neural field

@ Model the signed distance field u(x,y,z) = MLPy(x,y,z) with 6 the MLP
parameters.
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Implicit neural field

@ Model the signed distance field u(x,y,z) = MLPy(x,y,z) with 6 the MLP
parameters.

@ Signed distance field u to a surface S satisfies the Eikonal equation:

IVul| = 1 with u(x) =0 Vx € 9S
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Implicit neural field

@ Model the signed distance field u(x,y,z) = MLPy(x,y,z) with 6 the MLP
parameters.

@ Signed distance field u to a surface S satisfies the Eikonal equation:
IVul| = 1 with u(x) =0 Vx € 9S

@ Since a MLP is differentiable use the Eikonal equation as a loss function
[Gropp 2020]
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Optimization Process

@ Input data a set of points (x;,n;),/ € /
o Look for u continuous and a.e. C! such that:

[Vul =1
oo = 0 (1)
VUlaQ] =n

o Loss [Gropp 2020]

160) = S (us(x0)| + 711V () — i) + AE[(IV ()] — 1)2]
7

i€l
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Periodic Activation Functions [Sitzmann 2021]

@ Replace RelLU by periodic activation function x — sin(wx). Better
differentiability
@ Loss:

Lsar = |/| Z(|U9 xi)| + 7| Vug(xi) — nil])

iel
+ AE([Vuo (Il = 1)%] + A2Eoga ([0 (uo (x) ]
with 1(up(x)) = exp —aug(x)]; a >> 1

SIREN (ours) ReLU PE (basehne)

Figure 4: A comparison of SIREN used to fit a SDF from an oriented point clouse against the same
fitting performed by an MLP using a ReLU PE (proposed in [35]).

From [Sitzmann 2020]
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Periodic Activation Functions [Sitzmann 2021]

ReLU (baseline)

SIREN (ours) , ReLU (baseline) SIREN (ours)

representations directly on point clouds. Compared to ReLU implicit representations, our periodic
activations significantly improve detail of objects (left) and complexity of entire scenes (right).

From [Sitzmann 2020]
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Implicit displacement field [Yifan 2022]

v

@ Decompose the surface into a smooth base and a displacement field

@ Both the smooth surface and the displacement field are learned
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Overview

[Yifan 2022]

Implicit Neural Fields - per shape
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Implicit displacement field - definition

implicit displacement dn
o implicit inverse displacement dn

"""""""""" Ty",
‘AY
Definition
Smooth base SDF f, detailed SDF f, an implicit displacement field (IDF)
Vi£(x)

f(x) = f(x + d(x)n), where n = IVE(x)l

16/63
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Implicit displacement field - definition

implicit displacement dn
o implicit inverse displacement dn

. NP S ”,'};“,‘I'“'
Plaink Y . l "’ ,
¥y ]
Definition
Smooth base SDF f, detailed SDF f, an implicit displacement field (IDF)
2 Vi£(x)
f(x) = f(x + d(x)n), where n = ————
(x) = F(x + d(x)n) e ,
Learning - naive version
Minimize at query points x € R3: |f(x) — fe7(R)| with £ = x + d(x)n
16/63
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Inverse implicit displacement field

© implicit displacement dn

© implicit inverse displacement dn

[Yifan 2022]

Alternative
Inverse Displacement Mapping d: f(x + d(%)n) = f(&) J

Implicit Neural Fields - per shape 17/63



Inverse implicit displacement field

implicit displacement dn

o implicit inverse displacement dn

[Vifan 2022]

Alternative
Inverse Displacement Mapping d: f(x + d(%)n) = f(&) J
@ One can use i = I|§£§§<;H instead of A = Hgig’gl (error is theoretically

bounded)

17/63
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Architecture and training

@ Two SIREN networks, with different w parameters (one low - base, one high -

idf)
Composed distance field

f(X) - Nws(x)
Ilc\(X) = NUJB(X + X(f(X))NwD (X)%)

where  is an attenuation function

Loss

L= MlIVEC =11+ 3 (Mlf(p)] + Aa(L — (VF(p), n)))

x€R3 (p,n)€0Q2
+ ) Az exp(—100f(x))
xER3
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Results - Surface decomposition

composcd composed

groundtruth (@ wp =15, wp = 60

groundtruth (©)wp =30,wp =60 (d)wp =5, wp =60

[Yifan 2022]
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Detailed surface reconstruction

13

ground truth ours NGLOD-LOD6 ~ NGLOD-LOD4 D-SDF
(4.8MB) (946MB) (16MB) (7.4MB)

SIREN-7 w = 30
(5.6MB)

[Yifan 2022]
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Detail transfer

<
2
[}
g
S
£
2
g Non-transferable IDF N D
%

[Vifan 2022]

Transferable IDF 7% D
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Detail transfer results

source learned source base

learned source base +
displacement

target base +
transferred displacement

source (top) / target
(bottom)

target learned target base

ours

Implicit Neural Fields - per shape

[Yifan 2022]
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Outline

© INR for Shape Analysis
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Regularizing INR away from the surface

WY

[Clémot, Digne 2023]
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Medial Axis

Definition

A point p belongs to the medial axis of a compact shape if it has at least two
distinct nearest neighbors on the shape surface.
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Overview

.............. INRtraining‘ . . > SR
Uniform Skeletal points Skeletal complex
surface points MILP solving

min o]
L 40 —

st Du>1

...... & Lsurfaces Leikonal
Licarning, L1v
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Eikonal Equation

@ Infinite number of solutions

@ Viscosity solution theory: allows to select
the right solution

o Use smooth eikonal equation (not practical

A4

[Lipman 2019)) 3
_ X E
|IVul| —eAu=1 1 g
o Consequence: blobs appear
Infinite nber of solutions
Not an issue close to the surface — but far away? J
INR for Shape Analysis 27/63



Which neural network?

@ MLP (6 layers, 128-256 neurons/layer) with
ReLU activation functions

@ RelLU yields a function in W [Lipman
2019]

o But: not always easy to train

@ Sitzman (2021) replaces ReLU with sine
activation function: smooth function

VIVl
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TV regularization - some theory

@ Look for a smooth surrogate for the signed distance function

@ Medial axis: zeros of the gradient
@ The TV term favors that u has no second order differential content along the
gradient lines

Since Vu = (uy, uy, u;), it follows:

V|Vul = Vy/u2 + u2 + u2

1 2uy Uy + 2y Uy + 2Uz Uy,
= vl 2uilyy + 2uyuyy, 4 2u, Uy,
IVu Utz + 2uy Uy, + 22Uz Uy,
Vu
=H
IVl
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Total loss

o Eikonal loss:

Lot = / (1— [Vu(p))? dp
RB

@ Surface loss:

. _ nlp)-Vlp)
Carte = [ o200+ [ 1 B0

@ Learning point loss

Vu(p) - Vd(p)
Elearning = pezp( P) + ;}1 |VU || ||Vd( )H

@ + TV loss

Loss

L= >\e£eikonal + )\sﬁsurface + Alﬁlearning + )\TVACTV

INR for Shape Analysis
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Convergence

10? 4 —— Point cloud loss (0.01)
] —— Eikonal loss (0.01)
—— Learning points loss (0.00)
—— Total variation loss (1.07)
100 E
1071 5
1072
E M
0 10 20 30 40 50
Epochs
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Ours

Resulting Fields
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[Vl

Ours
0% 0.5% 1%
""’m“ﬂ rl?z/(.i

INR for Shape Ana|ylll
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VIVl
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then...

@ GPU skeleton tracing to extract points on the skeleton
@ Select a subset based on the Coverage Axis method [Dou 2022]

» N points x;, M skeletal points s; with distance r; to the surface.
» Coverage matrix: D (N x M)

Dy =1if ||pi — sj|| — r; < d and 0 otherwise
» Mixed Integer Linear Problem:

min [|v]]2
st. Dv>1 (6)

@ Link the selected points by computing the regular triangulation of weighted
skeletal points and surface points + keep simplices between skeletal points
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Results
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Results

0%

0.01%

Coverage Axis Lj;-medial skeleton

INR for Shape Analysis 37/63



Results

Ours Coverage Ours Coverage
Axis Axis
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With noise
0%

Ours

Coverage Axis

r'yy-
&8
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With noise
0%

-]
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Projecting points on the surface [Yifan 2021]

optimization with

@ Sample points on a neural implicit

@ Use them to improve robustness and
accuracy

[Yifan 2021]
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Projection on the surface

_ ime sampling ,
s=£(p; 0 —=.
r 1109 regularization
project resample upsample
.
X

implicit surface S, explicit surface @, E
=

e Starting from a point go in R3 project it on the surface
o Newton lterations: qx+1 = gk — J7 (qk)fo(qx) with J¢ (ak) = 5055 Hsz(Qk)

@ For nonsmooth fields, set an upper threshold for the displacement magnitude
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Uniform resampling

:0) sampling ,
¢ regularization
project resample upsample

[Yifan 2021]

implicit surface S, explicit surface @,

@ Move the points away from dense areas @ < 9 — ar

@ « step size

o r= Z?i,-ej\/(&) W(aiaa) ||;/: I

i

kY

1
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Upsampling

s=£(p; 0) sampling ,
r £ regularization

project resample upsample

implicit surface S, explicit surface @,

[Yifan 2021]

@ Move the points away from the edges (Edge-away resampling [Huang 2011])

@ Each point is :
» attracted to points that have a similar normal
> repulsed from dense areas.

@ Upsampled points are reprojected on the surface
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Application to INR fitting regularization

input ours baseline  screened Poisson  points2surf

[Yifan 2021]

e Warmup training (300 iterations)
o Extract isopoints + add isopoints to data points
@ Update the isopoints every 1000 iterations
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Arithmetic Queries [Sharp 2022]

[Sharp 2022]

SDF sphere tracing general interval tracing

@ fy a neural implicit Not necessarily a signed distance field.
@ Sphere tracing for SDF, interval arithmetic for general implicit field.

@ Goal: adapt interval arithmetic for neural implicits.
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Affine arithmetic [Comba and Stolfi 1993]

affine arithmetic

interval arithmetic

y— f(x)

[Sharp 2022]

@ Interval arithmetic gives loose bounds

o Affine arithmetic: tracks affine coefficients through computation

@ Similar to forward auto-diff: linear operations, nonlinear operations by
linearization (adds affine coefficients!)

MLP J

Affine operations followed by ReLU nonlinearity
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Nonlinearities

e R =x9+ Z,N:l xiei i € [-1,1]
@ Replace f by a linear approximation f(x) ~ax+f

@ 7Y = MaXycrange(R) |f(X) - 7?(X)|
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Nonlinearities

e R =x9+ Z,N:l xiei i € [-1,1]
@ Replace f by a linear approximation f(x) ~ax+f
@ 7Y = MaXycrange(R) |f(X) - 7?(X)|

0 2>y =f(R)=ax+ 5+ vazl axigj + YEN+1
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Nonlinearities

R =x9+ Z,N:l xiei i € [-1,1]

Replace f by a linear approximation f(x) ~ax+f
Y = Maxyeange(s) |F(x) — F(x)|

2>y =f(R)=axo+ B+ vazl axiei + YeEn+1
Each layer with width W adds W new coefficients.
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Nonlinearities

R =x9+ Z,N:l xiei i € [-1,1]

Replace f by a linear approximation f(x) ~ax+f
Y = Maxyeange(s) |F(x) — F(x)|

2>y =f(R)=axo+ B+ vazl axiei + YeEn+1
Each layer with width W adds W new coefficients.

Solution

Periodically replace a set of coefficients with a single new coefficients

condense(%,D) = xo + Z xiei + (Z |xi)ent1
i¢D i€eD
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Range bounds

Procedure 1 RANGEBOUND(fp, ¢, {v;})

O- //\

Input: A function fy : RY — R and a query box B of dimension \/ \\
s < d defined by its center ¢ € R9, and s orthogonal box axis ™~
vectors {v; € Rd}, not necessarily coordinate axis-aligned. < )

Output: A bound on the sign of fy(x) Vx € B as one of
POSITIVE, NEGATIVE, or UNKNOWN.
Re—c+ X7 vig

1:
i g RN
3 [y-,y+]  range(y) i

4 if y_ > 0 then return POSITIVE anaIYSlS

s: if y; < 0 then return NEGATIVE

6: else return UNKNOWN

[Sharp 2022]
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Range bounds

Procedure 1 RANGEBOUND(fp, ¢, {v;})

g A
Input: A function fy : RY — R and a query box B of dimension \/ \
s < d defined by its center ¢ € R9, and s orthogonal box axis
vectors {v; € Rd}, not necessarily coordinate axis-aligned. )

Output: A bound on the sign of fy(x) Vx € B as one of
POSITIVE, NEGATIVE, or UNKNOWN.

R o+ N v
i g NN
3 [y-,y+] < range(y) . _
4 if y— > 0 then return POSITIVE ana]ySls 8
s: if y; < 0 then return NEGATIVE £
6: else return UNKNOWN 2
Unknown?
Subdivide the box.
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Ray casting vs frustum ray casting

frustum ray casting
1.59 sec, 8.18M steps

ray casting
6.72 sec, 65.1M steps steps

165

Querying Neural implicits

[Sharp 2022]
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Applications

spatial hierarchy

implicit
surface

extracted mesh
1.23M faces
in 1.46 sec

considered \
for extraction \

Mesh extraction Closest point

search hierarchy

intersection verified not
found intersecting

Mesh Intersection
Querying Neural implicits - 52/63
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© Learning Implicit Representations
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Example-based shape reconstruction

o Deep SDF [Park 2019] learns a shape signature and deduces an implicit field
(auto-decoder)

@ Occupancy Network [Mescheder 2019] encoder-decoder to learn the
occupancy (binary field).
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DeepSDF

L dddididigi

LLveLN

@ Represent an entire class of shapes in an implicit way

/
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Training

(lelz) I:‘ D SDF COde D SDF
(x,y,2) )
(b) Coded Shape DeepSDF S

(a) Single Shape DeepSDF

Single shape version
L(fy(x), 5) = |clamp(fy, 5) — clamp(x, 5)|

with clamp(x, &) = min(d, max(—4d, x)), s isovalue.

56/63
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Training

vz [ ] sDF Code [ | sDF
(x,y,2)
(b) Coded Shape DeepSDF

[Park 2019]

(a) Single Shape DeepSDF

Latent shape version
fo(zi,x) = SDFi(X)

Model several distance fields with a single network (factor in shape space)

57/63
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Auto-decoder

Input Output Output
Backprogate
Code

I HHE

Codes

[Park 2019]

(a) Auto-encoder (b) Auto-decoder

@ Usually: train an auto-encoder + throw away the encoder.
@ Here: avoid spending computational resources on encoder.

@ Handle shapes of different number of samples.

58/63
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Model for the auto-decoder

o Data: N shapes X; = {(xj,s;),s; = SDF(x;)}.

@ Latent code z;, prior p(z;) = centered Gaussian with spherical covariance.

po(zi| X;) = p(zi) H po(sjlzi, x;)

@ Reformulation:
plsi1zi, ) = exp(—L(f(z1, 7). 5)) with fy an MLP.
Training

N K
. 1
argming, oy, D D LUz %). 5) + 51213

i=1 j=1
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Network architecture

512
Latent Vector D 1
FC FC FC
xy,2) |:| D D D D D |:| l:l I:l

[park 2019]

Learning Implicit Representations
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results

(a) Input Depth

(b) Completion (ours) (¢) Second View (ours) (d) Ground truth (e) 3D-EPN

[park 2019]

@ solve for the shape code from partial shapes and reconstruct

Learning Implicit Representations
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results

~i

(a) No noise (b) a =0.01 (0)a =0.02 (d) a = 0.03

[park 2019]

(e) a = 0.05
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Conclusion

@ Overview of Machine Learning methods
o Field changes every day!

@ Some new tools useful even without a database
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