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Introduction: Acquisition of point clouds
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3d surfaces typical challenges:
Cleaning the physical measure
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3d surfaces typical challenges:
Registering and merging scans
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3d surfaces typical challenges:
Orienting the point set
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3d surfaces typical challenges: Building a mesh from a set of
points

Shape courtesy of blender
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Results of the acquisition process
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Surface reconstruction: for what purpose?

Interpolating/Approximating?
Closed surface reconstruction? Boundary preserving surface reconstruction?
Smooth/piecewise smooth surface?
Detail preservation/representation sparsity?

Different reconstruction methods depending on the application
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Outline

1 Surface reconstruction from Computational Geometry

2 Implicit surface reconstruction

3 Machine Learning and Surface Reconstruction
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Methods coming from computational geometry

Convex Hulls...
Crust, Eigencrust, powercrust
Delaunay filtering
α-shapes
Ball Pivoting Algorithm
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Computational Geometry

A Delaunay Triangulation of S is the set of all triangles with vertices in S
whose circumscribing circle contains no other points in S∗.
Compactness Property: this is a triangulation that maximizes the min angle
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Computational Geometry

The Voronoi Diagram of S is a partition of space into regions V (p) (p ∈ S)
such that all points in V (p) are closer to p than any other point in S .
For a vertex, we can draw an empty circle that just touches the three points
in S around the vertex.
Each Voronoi vertex is in one-to-one correspondence with a Delaunay triangle
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Space partitioning

Given a set of points, we can construct the Delaunay triangulation
Label each triangle/tetrahedron as inside/outside
Reconstruction = set of edges/facets that lie between inside and outside
triangles/tetrahedra
Different ways of assigning the labels [Boissonat 84], tight cocoone [Dey
Goswami 2003], Powercrust [Amenta et al. 2001] Eigencrust [Kolluri et al.
2004]
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The Crust Algorithm [Amenta et al. 1998]

If we consider the Delaunay Triangulation of a point set, the shape boundary
can be described as a subset of the Delaunay edges.
How do we determine which edges to keep?
Two types of edges:

▶ Those connecting adjacent points on the boundary
▶ Those traversing the shape

Discard those that traverse the shape
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The Crust Algorithm [Amenta et al. 1998]

In 2D:
Given a point set S compute its Voronoi diagram and Voronoi vertices V

Compute the Delaunay triangulation of S ∪ V

Keep only edges that connects points in S (eq. to Keeping all edges for
which there is a circle that contains the edge but no Voronoi vertices)

In 3D: Not all Voronoi Vertices are added to the set. Only the poles (furthest
points of the Voronoi cell) are considered.
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Crust
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Crust
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Crust
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Crust
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Crust
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Crust
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Crust Result
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Ball Pivoting Algorithm

BPA computes a triangle mesh interpolating a given point cloud
Three points form a triangle if a ball of a user-specified radius ρ touches
them without containing any other point
Start with a seed triangle
The ball pivots around an edge until it touches another point, forming
another triangle
Expand the triangulation over all edges then start with a new seed
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Algorithm

Advancing front triangulation
Front is a set of edges
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Different types of expansion
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Rotating the sphere

e
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Finding the R-circumsphere
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The circumcenter H of triangle ABC has barycentric coordinates:(
a2(b2 + c2 − a2), b2(a2 + c2 − b2), c2(a2 + b2 − c2)

)
the square circumradius is

R2 =
a2 · b2 · c2

(a+ b + c) · (b + c − a) · (c + a− b) · (a+ b − c)
.
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Finding the R-circumsphere
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Such a sphere exists only if R2
b − R2 ≥ 0.

Let us denote by n the normal to the triangle plane, oriented such that is has
a nonnegative scalar product with the vertices normals. Provided R2

b −R2 ≥ 0
(hence the sphere existence), the center O of the sphere can be found as:

O = H +
√

R2
b − R2 · n.

Surface reconstruction from Computational Geometry 26/103



Properties and Guarantees of the resulting mesh

The surface is guaranteed to be self-intersection free (no triangle will
intersect each other except at an edge or vertex, and at most two triangles
can be adjacent to an edge).
Normal coherence on a facet.
For each triangle there exists an empty ball incident to the three vertices with
empty interior
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Detailed area

Surface reconstruction from Computational Geometry 28/103



Detailed area
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Detailed area

Surface reconstruction from Computational Geometry 28/103



Detailed area
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Detailed area
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Detailed area
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Smaller ball radius
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Smaller ball radius
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Smaller ball radius
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Smaller ball radius
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Smaller ball radius
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(j) r = 0.02 (k) r = 0.03 (l) r = 0.05

Figure: Radius too small: areas with lower density are not triangulated. Large radius :
higher computation times + detail loss.
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Figure: Reconstructing the Stanford Bunny point cloud, with a single radius (0.0003),
two radii (0.0003; 0.0005) and three radii (0.0003; 0.0005; 0.002).
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Radius Time(s) vertices facets boundary edges
0.0003 10s 318032 391898 272832

0.0003; 0.0005 21s 356252 698963 22727
0.0003; 0.0005; 0.002 29s 361443 713892 7897
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(a) Detail loss (b) Hole creation (c) A possible correction: us-
ing multiple radii

Figure: Detail loss and hole creation due to a too large radius (left) and a too small one
(middle). A possible solution is to use multiple radii (right).
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(a) r = 0.05 (b) r = 0.02; 0.03; 0.05

Figure: Applying the ball pivoting to a noisy sphere: r = 0.05 (left) and
r = 0.02; 0.03; 0.05 (right). A single radius does not allow to interpolate the input data
and applying multiple radii is not a solution in addition to being difficult to tune.
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Figure: Bunny and Dragon reconstruction
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Problems and solutions

The larger the ball radius the slower the computation
The larger the ball radius the more details will be lost
The smaller the ball radius the more dependent on the sampling
Varying ball radius ← slow down the process
Use of a scale space: a multiscale representation of the point cloud.
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Summary: Advantages/Drawbacks of the ball pivoting

Drawbacks Advantages

Size of the ball?
No suppression of redundant points
No hole closure

Control on the size of the triangles
created
Radius of the ball determines what
is a hole
Surface boundary preservation

Modification through the use of a scale space for better detail preservation.
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Outline

1 Surface reconstruction from Computational Geometry

2 Implicit surface reconstruction

3 Machine Learning and Surface Reconstruction
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Implicit surface reconstruction - Principle

See the surface as an isolevel of a given function
Extract the surface by some contouring algorithm: Marching cubes [Lorensen
Cline 87], Particle Systems [Levet et al. 06]
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Surface reconstruction from unorganized points
[Hoppe et al. 92]

Input: a set of 3D points
Idea: for points on the surface the signed distance transform has a gradient
equal to the normal

F (p) = ±min
q∈S
∥p − q∥

0 is a regular value for F and thus the isolevel extraction will give a manifold
Compute an associated tangent plane (oi , ni ) for each point pi of the point
set
Orientation of the tangent planes as explained before.
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Surface reconstruction from unorganized points
[Hoppe et al. 92]

Once the points are oriented
For each point p, find the closest centroid oi

Estimated signed distance function: f̂ (p) = ni · (p − oi )
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Poisson Surface Reconstruction [Kazhdan et al. 2006]

Input: a set of oriented samples
Reconstructs the indicator function of the surface and then extracts the
boundary.
Trick: Normals sample the function’s gradients
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Poisson Surface Reconstruction [Kazhdan et al. 2006]

1 Transform samples into a vector field
2 Fit a scalar-field to the gradients
3 Extract the isosurface
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Poisson Surface Reconstruction [Kazhdan et al. 2006]
To fit a scalar field χ to gradients V⃗ , solve:

min
χ
∥∇χ− V⃗ ∥

Eq to:

∇ · (∇χ)−∇ · V⃗ = 0⇔ ∆χ = ∇ · V⃗
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Gradient Function of an indicator function = unbounded values on the
surface boundaries
We use a smoothed indicator function

Lemma
The gradient of the smoothed indicator function is equal to the smoothed normal
surface field.

∇ · (χ ⋆ F̃ )(q0) =

∫
∂M

F̃ (q0 − p) · N⃗∂M(p)dp

Chicken and Egg problem: to compute the gradient one must be able to compute
an integral over the surface!!
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Approximate the integral by a discrete summation
Surface partition in patches P(s):

∇ · (χ ⋆ F̃ )(q0) =
∑
s

∫
P(s)

F̃ (q0 − p) · N⃗∂M(p)dp

Approximation on each patch:

∇ · (χ ⋆ F̃ )(q0) =
∑
s

|P(s)|F̃ (q0 − s) · N⃗(s)

Let us define V (q0) =
∑

s |P(s)|F̃ (q0 − s) · N⃗(s)
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Problem Discretization

Build an adaptive octree O
Associate a function Fo to each node o of O so that: Fo(q) = F ( q−o.c

o.w ) 1
o.w3

(o.c and o.w are the center and width of node o).⇒ multiresolution structure
The base function F is the nth convolution of a box filter with itself

V⃗ (q) =
∑
s∈S

∑
o∈N (s)

αo,sFo(q)s.N⃗

Look for χ such that its projection on span(Fo) is closest to ∇V :
Minimize

∑
o∈O⟨∆χ−∇ · V ,Fo⟩2

Extracted isovalue: mean value of χ at the sample positions
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Varying octree depth
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Varying octree depth
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Varying octree depth
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Resilience to bad normals

Image from Mullen et al. Signing the unsigned, 2010
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detail preservation

Poisson BPA Scale Space + BPA
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Moving Least Squares surfaces

definition
A set of points (xi ) ∈ R3 with associated function values fi , Moving least squares
approximation

p(x) = argminy
∑
i

(y − fi )
2θ(∥x − xi∥)

with θ a decreasing function (e.g. θ(t) = exp−t2))
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Adaptation to 3D surfaces

For each point compute its projection on the surface. The Point Set Surface
is defined as the fixed points of this projection procedure.
Variants: APSS [Guennebaud 2007], RIMLS [Oztireli 2009]
Can be used to define a distance to a surface (+surface reconstruction via
marching cubes).
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Results

[Oztireli 2009]
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Advantages and drawbacks of the Implicit surface
reconstruction methods

Drawbacks Advantages

Only semi-sharp, loss of details
Final mesh not interpolating the
initial pointset
Marching cubes introduces artefacts
Watertight surface, very bad with
open boundaries

Noise robustness
Watertight surface, hole closure
Most standard way of
reconstructing a surface
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From the signed distance function to the mesh

At each point in R3, the signed distance function to the surface can be
estimated
Extract the 0 levelset of this function: points where this function is 0

Approximation
Evaluate the function at the vertices of a grid and deduce the local geometry of
the surface in each grid cube.

Implicit surface reconstruction 56/103



Example in 2D
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Example in 2D
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From Marching Squares to Marching Cubes

Drawing lines between intersection points is ambiguous and does not give a
surface patch.
Images by Ben Anderson
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Look-up tables

There are 28 = 256 possible cases for cube corner values.
By symmetry + rotation arguments it reduces to 15 cases.
It is thus possible to build a look-up table giving the grid cell triangulation
based on the corner values case.
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Ambiguous cases
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Ambiguous cases
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Ambiguous cases

Refine the grid to remove ambiguation
Switch to marching tetrahedra algorithm
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Outline

1 Surface reconstruction from Computational Geometry

2 Implicit surface reconstruction

3 Machine Learning and Surface Reconstruction
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Machine learning based surface reconstruction

Needs a differentiable pipeline
Challenge: intrinsically a combinatorial problem...
Not necessarily example-based: surface reconstruction can be done per shape.
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AtlasNet [Groueix 2019]
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Some definitions:
▶ A manifold surface S in R3 is a topological set such that each point has a

neighborhood which is homeomorphic to an open disk of R2.
▶ Local map (or chart): a homeomorphism φ from an open subset U of S to an

open subset of R2.
▶ Atlas: an indexed family of local charts (Ui , ϕi ) from Ui to open subsets of R2;

such that the Ui s cover S.

Parameterization
This is the base for surface parameterization problems in geometry processing: Try
to unwrap a surface onto a planar patch (usually a square).

Machine Learning and Surface Reconstruction 65/103



AtlasNet [Groueix 2019]

Model the local maps as affine maps, they can be inverted if they are full
rank.
A ReLU-based MLP computes a piecewise affine map (full rank). This is due
to ReLU activation.
Start with N patches and compute their deformation onto the surface (Papier
mâché). Deformed patches may overlap.
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AtlasNet for surface reconstruction

Start with a latent representation x of a shape
For a set of points A of points sampled in [0, 1]2, we optimize the weights θi
of N functions (MLP) fθi
Sample a set Sd of M points on the surface S
Chamfer Loss

∑
p∈A

N∑
i=1

min
q∈SD

∥fθi (p, x)− q∥22 +
∑
q∈Sd

min
i=1···N

min
p∈A
∥fθi (p, x)− q∥2
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Result
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Results: reconstruction from single view
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Differentiable Surface Reconstruction [Rakotosaona 2021]
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A set of points vj ∈ Rd with weights wj

Weighted Delaunay Triangulation: projected lower envelop of points
(vj , ∥vj∥2 − wj) ∈ Rd+1

Any 2D (d = 2) triangulation can be obtained as a perturbation of a 2d
Weighted Delaunay Triangulation.
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Differentiable weighted Delaunay triangulation in 2D

All possible triangles with vertices in V are given an inclusion score ei .
defs: ci circumcenter of triangle i = {j , k , l}, ai|j reduced Voronoi cell of
vertex j onto triangle i . Then

ei =

{
1 if ci ∈ ax|i ∀x ∈ {j , k , l}
0 otherwise

Continuous inclusion score

si|j = σ(αd(ci , aj|i )) (σ sigmoid)

si =
1
3
(si|j + si|k + si|l)
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Differentiable weighted Delaunay triangulation in 2D

Weighted Voronoi cell aw

Intersection of half planes Hj≤k = {x ∈ R2|∥x − vj∥2 − wj ≤ ∥x − vk∥2 − wk}

redefine: ci weighted circumcenter of triangle i = {j , k , l}, ai|j reduced
weighted Voronoi cell of vertex j onto triangle i .
Same expression for the continuous inclusion score

si|j = σ(αd(ci , a
w
j|i )) (σ sigmoid)

si =
1
3
(si|j + si|k + si|l)
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Turning 3D triangulation problems into 2d triangulation
problems

Segment 3D shapes into developable sets by Least Squares Conformal Maps
[Lévy 2008].
Differentiable 2D meshing on each of the sets with boundary constraints.
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Losses
Area prescribing loss (A: function on the surface):

Larea =
1∑
i,j si|j

∑
i,j

(
1
2
∥(vj − vk)× (vl − vk)∥ − A(vj))

Boundary preservation loss:

Lb(V ,P) =
1
|V |

∑
j

exp(ε−min(ε, (vj − bj) · nbj ))

Other possible losses: angle loss, curvature alignment loss.
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The implicit alternative

Instead of computing a triangulation, optimize an implicit field
The implicit field is modeled by a neural network.
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Neural Radiance Field (Nerf [Mildenhall et al. 2020]

Goal: Generate a new view from a set of views
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Principle
Neural network takes as input a 3D coordinate and viewing direction and outputs
the volume density and view-dependent emitted radiance at this location and
direction.

Cameras are calibrated (ie we know their positions, orientations and intrinsic
parameters)
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Training

Neural net FΘ : (x , y , z , θ, ϕ)→ (R,G ,B, σ): Fully connected layers
Volume rendering by querying along viewing directions.
Sampling along the rays to estimate the rendering integral
Comparison with the ground truth color on the target image
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More tricks

Add a positional encoding to improve high resolution details
View-dependent radiance is what allows to capture mirror reflections
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Results

Video: https://www.matthewtancik.com/nerf

Training time
The optimization for a single scene typically take around 100– 300k iterations to
converge on a single NVIDIA V100 GPU (about 1–2 days). (Faster variants
released since: Instant NGP [Mueller 2022])

Machine Learning and Surface Reconstruction 80/103
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Implicit neural field

Model the signed distance field u(x , y , z) = MLPθ(x , y , z) with θ the MLP
parameters.
Signed distance field u to a surface S satisfies the Eikonal equation:

∥∇u∥ = 1 with u(x) = 0 ∀x ∈ ∂S

Since a MLP is differentiable use the Eikonal equation as a loss function
[Gropp 2020]
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Optimization Process

Input data a set of points (xi , ni ), i ∈ I

Look for u continuous and a.e. C1 such that: ∥∇u∥ = 1
u|∂Ω = 0

∇u|∂Ω] = n
(1)

Loss [Gropp 2020]

l(θ) =
1
|I |

∑
i∈I

(|uθ(xi )|+ τ∥∇uθ(xi )− ni∥) + λEx [(∥∇uθ(x)∥ − 1)2]
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Periodic Activation Functions [Sitzmann 2021]
Replace ReLU by periodic activation function → better differentiability
Loss:

Lsdf =
1
|I |

∑
i∈I

(|uθ(xi )|+ τ∥∇uθ(xi )− ni∥)

+ λEx [(∥∇uθ(x)∥ − 1)2] + λ2Ex /∈Ω[(∥ψ(uθ(x)∥]

with ψ(uθ(x)) = exp−α|uθ(x)|; α >> 1
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Periodic Activation Functions [Sitzmann 2021]
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Regularizing INR away from the surface

[Clémot, Digne 2023]
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Medial Axis

Definition
A point p belongs to the medial axis of a compact shape if it has at least two
distinct nearest neighbors on the shape surface.
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Overview

INR training
Point set with

oriented normals
Uniform

surface points
Skeletal points Skeletal complex

MILP solving
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Eikonal Equation

Infinite number of solutions
Viscosity solution theory: allows to select
the right solution
Use smooth eikonal equation (not practical
[Lipman 2019])

∥∇u∥ − ε∆u = 1

Consequence: blobs appear
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]

Infinite nber of solutions
Not an issue close to the surface – but far away?
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Which neural network?

MLP (6 layers, 128-256 neurons/layer) with
ReLU activation functions
ReLU yields a function in W 1,p [Lipman
2019]
But: not always easy to train
Sitzman (2021) replaces ReLU with sine
activation function: smooth function

IGR SIREN

u
∥∇

u
∥

∥∇
∥∇

u
∥∥
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TV regularization - some theory

Look for a smooth surrogate for the signed distance function
Medial axis: zeros of the gradient
The TV term favors that u has no second order differential content along the
gradient lines

Since ∇u = (ux , uy , uz), it follows:

∇∥∇u∥ = ∇
√
u2
x + u2

y + u2
z

=
1

2∥∇u∥

2uxuxx + 2uyuxy + 2uzuxz
2uxuxy + 2uyuyy + 2uzuyz
2uxuzx + 2uyuzy + 2uzuzz


= Hu

∇u
∥∇u∥
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Total loss

Eikonal loss:
Leikonal =

∫
R3

(1− ∥∇u(p)∥)2 dp (2)

Surface loss:

Lsurface =

∫
∂Ω

u(p)2dp +

∫
∂Ω

1− n(p) · ∇u(p)
∥n(p)∥ ∥∇u(p)∥

dp (3)

Learning point loss

Llearning =
∑
p∈P

(u(p)− d(p))2 +
∑
p∈P

1− ∇u(p) · ∇d(p)
∥∇u(p)∥ ∥∇d(p)∥

(4)

+ TV loss

Loss

L = λeLeikonal + λsLsurface + λlLlearning + λTVLTV (5)
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Convergence

0 10 20 30 40 50
Epochs

10 2

10 1

100

101 Point cloud loss (0.01)
Eikonal loss (0.01)
Learning points loss (0.00)
Total variation loss (1.07)
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Resulting Fields
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then...

GPU skeleton tracing to extract points on the skeleton
Select a subset based on the Coverage Axis method [Dou 2022]

▶ N points xi , M skeletal points si with distance ri to the surface.
▶ Coverage matrix: D (N ×M)

Dij = 1 if ∥pi − sj∥ − rj ≤ δ and 0 otherwise

▶ Mixed Integer Linear Problem:

min ∥v∥2

s.t. Dv ⪰ 1 (6)

Link the selected points by computing the regular triangulation of weighted
skeletal points and surface points + keep simplices between skeletal points
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Results
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Results
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Results
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With noise
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With noise
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Example-based shape reconstruction

Deep SDF [Park 2019] learns a shape signature and deduces an implicit field
(auto-decoder)
Occupancy Network [Mescheder 2019] encoder-decoder to learn the
occupancy (binary field).
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Conclusion

Shape reconstruction is a long standing problem: no universal solution.
Benefits from advances in Machine Learning and Optimization.
Do we need to reconstruct the surface? Or just be able to render it?
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