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Realistic images synthesized by StyleGAN3 [5] (a) and comparison with a state-of-the-art shape synthesismethod [6] (b). (c) shows a real world shape with details and geometric content.

Context:
Synthesizing data is a big challenge of today’s computer vision and computer graphicsresearch. From initial VAE[1] to GAN [2] to diffusion generative models [3] image synthesis hasreached a high level of realism, with globally coherent images and realistic high frequencydetails. Several reasons explain this discrepancy, the most important one being the fact thatshapes are non-euclidean data, for which defining an equivariant rotation is an open problem.
While some methods reach some level of realism using either explicit structure retrieval [4],continuous normalizing flows [7] or more recently denoising diffusion models [6], no (or onlyfew) high frequency geometric details are synthesized and the level of realism is notcomparable to the one reached for image generation. High resolution detail synthesis is oftentackled from a different perspective, by adding some local details to existing shapes[8].Furthermore, the synthesis remains completely shape topology agnostic.
Goal
In this internship, we will focus first on a single of these issues: re-introducing some topologicalknowledge into shape synthesis. The idea is to synthesize first a shape of the desired topology,and then to deform it into a detailed geometric shape. This point of view will allow for topology-consistent shape interpolation. The internship will start by an extensive review of various recentshape synthesis methods and how shape topology can be introduced in these models.

Required skills: geometry processing, machine learning, optimization
Languages: Python/pytorch
Advisor: Julie Digne
Location: LIRIS, Origami team, Nautibus building, Univ Lyon 1



Salary: 600€ per month
Duration: 4 to 6 months (starting date anytime between Feb 2022 to April 2022)
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