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UMR5205, F-69622, France
kamel.madi@liris.cnrs.fr

Eric PAQUET
National Research Council Canada,

Ottawa, Canada
eric.paquet@nrc-cnrc.gc.ca

Hamida SEBA , Hamamache KHEDDOUCI
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Abstract

We consider the problem of comparing deformable 3D
objects represented by graphs, i.e., triangular tessellations.
We propose a new algorithm to measure the distance be-
tween triangular tessellations using a new decomposition
of triangular tessellations into triangle-Stars. The proposed
algorithm assures a minimum number of disjoint triangle-
Stars, offers a better measure by covering a larger neigh-
borhood and uses a set of descriptors which are invariant
or at least oblivious under most common deformations. We
prove that the proposed distance is a pseudo-metric. We
analyse its time complexity and we present a set of experi-
mental results which confirm the high performance and ac-
curacy of our algorithm.

1. Introduction

In the field of 3D objects recognition, it is often required

to compare different 3D objects represented by graphs. Us-

ing triangular tessellations, 3D objects may be compared

with graph matching techniques. Graph matching is the pro-

cess of finding a correspondence between nodes and edges

of two graphs that satisfies a certain number of constraints

ensuring that similar substructures in one graph are mapped

to similar substructures in the other. Several approaches

have been proposed to solve the graph matching problem

[11, 5, 8, 10]. Graph edit distance is one of the most cele-

brated measures to determine the distance between graphs

[6, 17, 15, 13]. It is defined as the minimum-cost sequence

of edit operations that transform one graph into another.

The tolerance to noise and distortion is one of the advan-

tages of edit distance. Unfortunately, graph edit distance

has a high computational complexity which grows expo-

nentially with the number of nodes [7]. In this paper, we

address the problem of comparing deformable or non-rigid

shapes (such as human and animal bodies). The shapes con-

sidered are represented by graphs, i.e., triangular tessella-

tions. We propose a new distance for comparing deformable

3D objects. This distance is based on the decomposition of

triangular tessellations into triangle-Stars. A triangle-Star

is a connected component formed by the union of a trian-

gle and its neighborhood. The number of triangle-Stars ob-

tained is much smaller than the number of nodes and the

number of classic stars [14, 21] and, as a result, the com-

putational complexity is reduced. The proposed graph edit

distance is based on triangle-Stars which is a local struc-

ture that covers a larger neighborhood than a classic star de-

composition [14, 21]. Consequently, the correctness of the

proposed dissimilarity measure is improved. This is justi-

fied by the fact that optimal methods are based on graphs

global structures and, consequently, a larger local structure

allows to be closer to the global one. The distance that we

propose uses a set of parameters which are either invariant

or at least oblivious under most common deformations. The

remainder of the paper is organized as follows. Firstly, some

useful definitions are introduced in Section 2. In Section 3,

the proposed algorithm is described and its complexity ana-

lyzed. Then, experimental results are reported in Section 4.

Finally, Section 5 concludes the paper.

2. Definitions

In this section, we introduce some useful definitions re-

lated to the problem of graph edit distance.
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Definition 1 (Graph) A graph g is a set of nodes con-

nected by a set of edges. Formally, a graph g is a four tu-

ple g = (N,E, α, β), where N is a finite not empty set of

nodes. E ⊆ N ×N is the set of edges. α : N → LN is the

node labelling function, β : E → LE is the edge labelling

function while LN and LE are the labels associated with

the nodes and edges respectively [2].

Definition 2 (Triangular tessellations) A triangular tes-

sellation gTr is a graph defined by a set of nodes, edges and

triangles. Formally, gTr is a graph defined by a six tuple

gTr = (N,E, T, α, β, θ), where T is a set of triangles and

θ : T → LT is a labelling function and, LT is the set of

triangle labels.

Graph Edit Distance (GED) The Graph Edit Dis-

tance [14] between two graphs g1 and g2 is the minimum

number of edit operations (minimum cost) to transform g1
into g2. A set of edit operations is given by insertions,

deletions and substitutions (or relabeling) of graph elements

(nodes and edges). We denote the substitution of two ele-

ments u and v by (u → v), the deletion of element u by

(u → ε), and the insertion of element v by (ε → v). A

cost is associated to each edit operation. A sequence of edit

operations e1, , ek transforming g1 into g2 is called an edit

path between g1 and g2. However, for every pair of graphs

(g1 , g2), several edit paths transforming g1 into g2 exist

with different total costs. The edit distance of two graphs is

then defined as the minimum cost edit path between the two

graphs (g1 , g2).

3. Algorithm overview
In this section, we present a new decomposition of trian-

gular tessellations into connected components that we call

triangle-Stars. This decomposition aims to reduce the num-

ber of components while covering a larger number of neigh-

bors. In addition, the proposed decomposition allows ob-

taining a representation which is invariant or at least oblivi-

ous under most common deformations. Prior to the decom-

position, a strict total order on the triangles must be estab-

lished. This order aims to reduce the number of triangle-

Stars that is generated and guarantees the uniqueness of

the resulting decomposition. Finally, we propose a dis-

tance (dissimilarity measure) between the triangle-Stars of

the two triangular tessellations and address their matching.

We also prove that the proposed distance is a pseudo-metric.

We present the computational complexity of the proposed

algorithm.

3.1. Graph decomposition

We propose a decomposition of a triangular tessella-

tion graph into a set of connected components that we call

triangle-Stars (TS). We define the concept of triangle-Star

as follows:

Definition 3 (neighborhood of a triangle): two triangles

are neighbors, if they share, at least, a common node. Let

t1 and t2 two triangles and N(t1) and N(t2) their respec-

tive nodes. Then, t1 and t2 are neighbors ⇔ ‖N(t1) ∩
N(t2)‖ > 0. In other words, the neighbors of a triangle t
are triangles sharing at least a common node with the trian-

gle t.

Definition 4 (triangle-Star): A triangle-Star ts is a la-

belled sub-graph, defined by a triangle and a set of its

neighbors. Formally, a triangle-Star ts is a three tuple

ts = (tr, T
′, θ), where: tr is the root triangle, T ′ is the

set of adjacent triangles and θ : T → LT is the triangle la-

belling function while LT as a set of labels associated with

the triangles.

Triangle-Star features: Each triangle tj is defined with

six-tuple tj = (n1, n2, n3, e1, e2, e3). The nodes ni are la-

belled by their Cartesian coordinates. In our case, the nodes

ni are labelled with three coordinates ni = (x, y, z) corre-

sponding to the three dimensions. The edges ek = (np, nw)
are labelled (weighted) with the Euclidian distance between

their associated nodes (np, nw). The triangles are labelled

by a three-tuple tj = (id, Area, Perimeter), where id is

a number. Each triangle-Star is characterised by a set of

descriptors, allowing the evaluation of the dissimilarity be-

tween triangle-Stars. We consider the following descrip-

tors: Area of triangle-Star, Perimeter of triangle-Star, Area

of the triangles forming the triangle-Stars, their Perimeters,

the Weights associated with their edges, and the Degrees of

their nodes.

Triangle-Star Vector representation A vector represen-

tation of triangle-Star is given by (see Table (4) for symbols

descriptions):

{AG(ts), PG(ts), {A(ti), P (ti), W (ti, j=1...3),

deg(ti, j=1...3)}i=‖T (ts)‖i=1 }

where:

• The triangles of triangle-Star ts are ranked according

to their areas (descending order).

• The weights of edges are ranked by descending order.

• The degrees of nodes are ranked by descending order.

• All triangle-Stars TS are represented by vectors which

has the same size : size = 2 + (Γ ∗ 8).
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• Γ is the maximum number of triangles in the two set

of triangle-Stars in the two compared graphs.

• If a triangle-Star ts has a number of triangle less than

Γ , the rest of the vector is completed with zeros.

Definition 5 (Disjoint triangle-Stars): Two triangle-

Stars tsi and tsj are disjoints, if they do not share a com-

mon triangle. let i �= j, tsi and tsj are disjoints ⇒
T (tsi) ∩ T (tsj) = Ø.

3.2. Triangles ordering

The proposed method of decomposition, allows to have

disjoint triangle-Stars (Definition 5), which significantly re-

duces the number of components (‖TS‖ 
 ‖N‖ < ‖T‖,
see Figure 3) while reducing the number of comparisons

in between the triangle-Stars associated with the two trian-

gular tessellations. However, according to the order con-

sidered, the set of triangle-Stars obtained may be differ-

ent (see Example 1). Indeed, the same triangular tessel-

lation may generate different sets of triangle-Stars, both

in terms of cardinality and in terms of triangle-Stars ob-

tained, if the ordering of the triangles is not the same. In

order to ensure the uniqueness of the decomposition and

a further reduced number of triangle-Stars, a descending

strict total order must be established on the set of triangles

prior to their decomposition into triangle-Stars (see Exam-

ple 2). In order to establish a descending strict total order

on the triangles set, each triangle is represented by a 10-

tuple < ‖neighbors‖ ; x1, y1, z1 ; x2, y2, z2 ; x3, y3, z3 >:

the number of neighbors and the coordinates x, y, z, in the

reference frame defined by the Eigen vectors of the ten-

sor of inertia associated with the tessellation, of the three

nodes associated with the triangle. The number of neigh-

bors ‖neighbors‖ is used in order to further reduce the

number of triangle-Stars. If two triangles have the same

number of neighbors, the node’s coordinates are utilised in

order to ensure the uniqueness of the decomposition. The

nodes of the triangle in the 10-tuple are ordered according to

their coordinates, starting by the first coordinate x. In case

of equality, the next coordinates are compared until an in-

equality is obtained. The coordinates of the nodes are solely

considered in order to ensure the uniqueness the decompo-

sition.

Example 1 Let a graph-tessellation Gtr containing

5 triangles t1...5, with ‖N(t1)‖ = 1, ‖N(t2)‖ = 3,

‖N(t3)‖ = 2, ‖N(t4) = 1‖ and ‖N(t5)‖ = 1, where

N is a triangle neighborhood (see Figure 1). By applying

a descending order we obtained 2 triangle-Stars (see Ta-

ble 1). And by applying the ascending order we obtained

3 triangle-stars (see Table 2).

Figure 1. A graph-tessellation Gtr

ST1 ST2

Table 1. The set of triangle-Stars using a Descending order.

ST1 ST2 ST3

Table 2. The set of triangle-Stars using a Ascending order.

Figure 2. The triangle t0 with n triangles neighbors.

Example 2 Let a triangle t0 with n triangle neighbors

t1...n (see Figure 2). If we consider a triangle order based

on the number of neighbors with descending order, we ob-

tained only one triangle-Star, otherwise, if the process of

decomposition stars with any neighbors t1...n we obtained

3 triangle-Stars.

3.3. Triangle-Stars decomposition

Once the strict total order of the triangles is established,

we evaluate the decomposition of the graph into triangle-
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Figure 3. Comparison of the average number of nodes, triangles

and triangle-Stars in the TOSCA database.

Stars. The process of decomposition is presented in the fol-

lowing algorithm (Algo. 1).

Algorithm 1 Graph decomposition into triangle-Stars.

1: Inputs: A graph gTr

2: Outputs: A set of triangle-Stars TS.

3: Begin
4: Apply a descending strict total order on the set of tri-

angles of gTr;

5: TS = Ø ;

6: while T (gTr) �= Ø do
7: ti = T (gTr)[0]
8: tsi = ti ∪ neighbors(ti) ;

9: TS = TS ∪ tsi ;

10: T (gTr) = T (gTr) − (ti ∪ neighbors(ti)) ;

11: end while
12: return TS ;

13: End

We explore the list of triangles according to the defined

order and we construct a triangle-Star which is defined by

the current triangle and its neighbors (Definition 3). The

process terminates when the list of triangles not yet ex-

plored is empty.

Example Let us consider a triangular tessellation de-

fined as follow : gTr = { 16 nodes , 20 triangles t1...20 }
(Table 3). The decomposition into triangles-Stars begins

by constructing the first triangle-Star TS1 using the trian-

gle t13 with the set of its triangle neighbors. The triangle

t13 is the first triangle chosen, since it is the one having

the maximum number of neighbors, which is 12. In the re-

maining set of triangles not used in the construction of TS1,

the triangle t1 that had 7 neighbors which is the maximum,

is used to construct the second triangle-Star TS2. TS2 is

constructed using t1 and its 3 neighbours (not 7, because

T (TS1) ∩ T (TS2) = Ø). The third triangle-Star TS3 is

formed of t11 and its neighbors, t11 had 5 neighbors which

is the maximum in the remaining set of triangles. TS3 is

Graph G

Triangle-Stars

TS1

TS2

TS3

Table 3. Example, decomposition of a graph into a set of triangle-

Stars.

constructed using t11 and its 2 neighbours (not 6 neigh-

bours, because
⋃i=3

i=1 T (TSi) = Ø).

The proposed decomposition of triangular tessella-

tions into triangle-Stars offers a reduced number of triangle-

Stars ts as opposed to the number of nodes ‖TS‖ 
 ‖N‖.
The resulting triangle-Stars are disjoints, formally: let

i �= j, ∀ tsi , tsj ∈ TS(G) ⇒ T (tsi) ∩ T (tsj) = ∅.
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The triangle-Star covers a larger local area than the clas-

sical star [14]. In addition, the proposed decomposition is

unique.

3.4. Edit distance between triangle-Stars

In this section, we show how to compute the graph edit

distance between triangle-Stars. The proposed similarity

measure is intended for the comparison of deformable ob-

jects. Consequently, the set of parameters or descriptors

must be invariant or at least oblivious under most common

deformations. Indeed the proposed similarity measure is

based on the following set of parameters: Area of triangle-
Star, Perimeter of triangle-Star, Area of triangles,

Perimeter of triangles, Weights of edges and Degrees
of nodes. Formally a triangle-Star is represented as fol-

lows: {AG(ts), PG(ts), {A(ti), P (ti), W (ti, j=1...3),

deg(ti, j=1...3)}i=‖T (ts)‖i=1 }. The similarity measure d be-

tween two triangle-Stars tsi and tsj is computed as:

d(tsi, tsj) = 1−
∑k=6

k=1 simk (tsi, tsj)∑k=6
k=1 αk

(1)

The similarity measure d is a normalized value: 0 ≤ d ≤ 1.

The functions simk are defined as:

sim1(tsi, tsj) = α1 ∗ |AG(tsi) − AG(tsj)|
AGMAX

(2)

sim2(tsi, tsj) = α2 ∗ |PG(tsi) − PG(tsj)|
PGMAX

(3)

sim3(tsi, tsj) = α3 ∗
∑l=Γ

l=1 | A(T (tsi)l) − A(T (tsj)l) |
AMAX ∗ Γ

(4)

sim4(tsi, tsj) = α4 ∗
∑l=Γ

l=1 | P (ti,l) − P (tj,l) |
PMAX ∗ Γ (5)

sim5(tsi, tsj) = α5 ∗
∑l=Γ

l=1

∑k=3
k=1 |Wi,l,k − Wj,l,k |
3 ∗WMAX ∗ Γ

(6)

sim6(tsi, tsj) = α6∗
∑l=Γ

l=1

∑k=3
k=1 | Degi,l,k − Degj,l,k |
3 ∗DegMAX ∗ Γ

(7)

Where the symbols associated with the similarity mea-

sure are described in Table 4.

Symbol Description

ti,l The triangle tl in the triangle-Star tsi :

tl ∈ tsi
Wi,l,k The weight (Euclidian distance) of the edge

ek of the triangle tl ∈ tsi
Degi,l,k The degree of node nk of the triangle tl ∈ tsi
Γ Max number of triangles in the set triangle-

Stars of the two graphs g1 and g2.

αk=1...6 Parameters associated with the descriptors

αk ∈ N and
∑k=6

k=1 αk > 0
A(ti) Area of the triangle i.
P (ti) Perimeter of the triangle i.
AG(tsi) Area of the triangle-Star i.

AG(tsi) =
∑j=‖T (tsj)‖

j=1 A(tj)

PG(tsi) Perimeter of the triangle-Star i.

DG(tsi) =
∑j=‖T (tsj)‖

j=1 D(tj)

Table 4. Symbols associated with the similarity measure and theirs

description.

3.5. Edit distance between two triangular tessella-
tions

The dissimilarity between two graphs represented by

triangle-Stars is addressed in the last part of the algorithm.

We call this dissimilarity measure Triangle-Star Measure
TSM which aims to determine the best matching between

the triangle-Stars associated with two graphs. The dissim-

ilarity between two sets of triangle-Stars is defined as fol-

lows:

Definition 6 (TSM ) Let gTr 1 and gTr 2 be two trian-

gular tessellations, TS1 and TS2 their corresponding sets

of triangle-Stars and M the set of all possible matching

between TS1 and TS2. The similarity TSM(TS1, TS2) is

formulated as follow (Eq. 8 and Eq. 9):

TSM(TS1, TS2) =

max
m∈M

∑
tsi ∈ TS1, m(tsi) ∈ TS2

d(tsi, m(tsi)) (8)

The normalised dissimilarity TSM(TS1, TS2 is given

by:

TSM(TS1, TS2) =

1− maxm∈M
∑

tsi ∈ TS1, m(tsi) ∈ TS2
d(tsi, m(tsi))

max(‖TS1‖, ‖TS2‖)
(9)

The computation of TSM(TS1, TS2) is equivalent

to solving the assignment problem which is one of the fun-

damental combinatorial optimization problems that aim to
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find the minimum/maximum weight matching in a weighted

bipartite graph. To solve this assignment problem, we de-

fine a n × n matrix D, with n = max(‖TS1‖, ‖TS2‖).
Each element Di,j of the matrix represents the dissimilarity

measure d(tsi, tsj) between a triangle-Star tsi in TS1 and

a triangle-Star tsj in TS2. We apply the Hungarian algo-

rithm [9] on the matrix D in order to find the best assign-

ment in O(n3) time. The resulting distance (dissimilarity)

is compared to a threshold th ∈ [0, 1] defined by an expert

or by experimentation (depending on the database), in order

to decide if the compared triangular tessellations are similar

or not.

Example Let TS1 and TS2 two set of triangle-stars,

‖TS1‖ = ‖TS2‖ = 4. Let D the matrix of similarities

between TS1 and TS2.

⎛
⎜⎜⎝

ts2,0 ts2,1 ts2,2 ts2,3
ts1,0 0.11 0.90 0.25 0.21
ts1,1 0.10 0.15 0.65 0.89
ts1,2 0.67 0.03 0.51 0.17
ts1,3 0.66 0.88 0.33 0.99

⎞
⎟⎟⎠

The max sum, similarity = 3.21.

The normalised dissimilarity (edit distance)

is TSM(TS1 , TS2) = 1 − 3.21
4 = 0.1975

3.6. The pseudo metric

In this section we prove that the proposed distance is a

pseudo-metric.

Definition : Let X a set of objects and x, y, z ∈ X .

Let f be a function defined as follow f : X ×X −→ R.

Let the following set of properties:

1. non-negativity: f(x, y) ≥ 0

2. symmetry: f(x, y) = f(y, x)

3. triangle inequality: f(x, y) ≤ f(x, z) + f(z, y)

4. uniqueness: f(x, y) = 0⇒ x = y

The function f is a metric if f satisfies the four men-

tioned properties and f is a pseudo-metric if f satisfies

only the first three properties (1, 2 and 3).

Since f is a pseudo metric, a distance function may be

defined between each pair of graphs. As a result, the sim-

ilarity of the objects associated with these graphs may be

efficiently determined [19, 1].

Lemma The proposed similarity measure TSM
(Eq. 9) between two sets of triangles-stars TS1 and TS2
is a pseudo-metric.

Proof: From (Eq. 9) it may be concluded that if TSM
is a pseudo-metric then d (Eq. 1) is a pseudo-metric
which implies that simk (Eq. 2) is a pseudo-metric.

Consequently, we shall prove that simk (Eq. 2) is a

pseudo-metric. Proving that simk (Eq. 2) is a pseudo-
metric is equivalent to check the first three properties in

simk (Eq. 2). The functions simk are defined as follows:

simk = αk ∗ |x1−x2|
β with x1, x2,∈ R≥0, αk, β ∈ R>0.

1. non-negativity: TSM(TS1, TS2) ≥ 0. We have

simk ≥ 0⇒ TSM ≥ 0 Thus TSM is non-negative.

2. symmetry: TSM(TS1, TS2) = TSM(TS2, TS1).
The proposed decomposition is unique and the TSM
is only based on symmetrical operations (addition,

sum, subtraction in absolute value). Consequently

TSM is symmetric.

3. triangle inequality: TSM(TS1, TS2) ≤
TSM(TS1, TS3) + TSM(TS3, TS2). We have

the triangle inequality verified in: |x1 − x2| ≤
|x1−x3|+|x3−x2|. Thus the triangle inequality is ver-

ified in simk therefore, we have: TSM(TS1, TS2) ≤
TSM(TS1, TS3) + TSM(TS3, TS2). Consequently

the triangle inequality is verified in TSM .

3.7. Complexity of the proposed algorithm

The most important part, in term of complexity, is the

one solving the assignment problem. We used the Hungar-

ian algorithm [14, 9] to find the best assignment in O(n3)
time, where n is the maximum number of components in

the two graphs compared. Let n = max(‖N1‖, ‖N2‖)
and n′ = max(‖TS1‖, ‖TS2‖), where Ni is the set of

nodes and TSi is the set of triangle-Stars in gtr i. In

the proposed decomposition, any triangle-Star has at least

one triangle. Consequently, in the worst case, we have

n′ = n
3 = 0.33 ∗ n, which means that the complexity

is O(0.036 n3). However the number of triangle-Stars
depends on the structure of the underlying graph. For the

TOSCA Database [3, 4] , which is used in our experi-

ments, we have on average n′ = n
3.9828 = 0.2510 ∗ n

which means that the complexity is: O(0.01582 n3). Since
‖N‖
‖TS‖

∼= 1.1411 ∗ log(‖N‖) , the complexity is of the order

of O(0.67 ∗ [ n
log(n) ]

3).

4. Experimental results
In order to evaluate the proposed method, we under-

took a set of experimentations and we compare our ap-

proach with some state-of-the-art shape-matching algo-

rithms on the TOSCA Database [3, 4] . The TOSCA

Database [3, 4] consist of 148 three-dimensional objects.

Each object is represented by a triangular tessellation. The
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Class ‖Class‖ Pose 1 Pose 2

Centaur 6

Gorilla 21

Table 5. Some objects of the TOSCA Database [3, 4] .

Threshold General

Accuracy

Positive

Accuracy

Negative

Accuracy

0.06 83.24 % 82.29 % 83.35 %

0.07 78.3 % 91.1 % 76.79 %

0.08 74.6 % 95.46 % 72.14 %

0.05 88.03 % 64.92 % 90.75 %

0.04 90.54 % 40.75 % 96.40 %

Table 6. General, positive and negative accuracy according to the

classification threshold.

database is categorized into twelve (12) classes. Each class

contains an object with different deformations. The cardi-

nality of the classes is not the same. On average, each tri-

angular tessellation has 3154 nodes, 6220 triangles which

result into 791 triangle-Stars. Table 5 shows some 3D ob-

jects of the TOSCA Database.

The proposed distance TSM is a parameterized distance

having a set of parameters αk allowing different configura-

tions, the default value is: αk = 1, ∀ k. In addition, we

defined a threshold in order to improve the classification ac-

curacy. Considering the set of parameters αk and the thresh-

old in our approach offer a error-tolerant distance and make

the proposed approach invariant to different deformations.

The parameters αk and the threshold may be specified by

inspection or by using machine learning techniques.

Table 6 shows some typical results with the following

settings: ∀ k, αk = 1 and threshlod ∈ [0.04, 0.08]. The

different types of accuracy are defined later on.

For the TOSCA Database, we chose the following set-

tings: ∀ k, αk = 1 and threshlod = 0.06. We have

computed the confusion matrix for each object belonging

to TOSCA [3, 4] . Each element of the confusion matrix in

Figure 4 is associated with the dissimilarity between ob-

jects i and j. Dark colours are associated to dissimilarity

close or equal to zero, Light colours are associated to dis-

similarity close or equal to one. Objects are similar if their

dissimilarity is close or equal to zero. Using TOSCA, we

generate a n × n matrix, with n = 148 (the number of 3D

objects). Figure 4 show the confusion matrix associated

Figure 4. Confusion matrix associated with the TOSCA Database.

General

Accuracy

Positive

Accuracy

Negative

Accuracy

83.24 % 82.29 % 83.35 %

Table 7. TSM Accuracy results for TOSCA.

with their dissimilarity. The darkest regions correspond to

the block-diagonals of the confusion matrix which are as-

sociated with the intra-class dissimilarity. We observe that

objects from the same classes are similar, for instance, the

following classes: gorilla, centaur, horse ... etc. and we ob-

serve also that objects from different classes are dissimilar,

for example: (cat, gorilla), (cat, seahorse), (gorilla, lioness)

... etc. In a few cases, there is some interclass similarity:

the dog and the wolf, David and Victoria and, David and

Michael. This is not surprising considering that their shape

is relatively similar. All these observations demonstrate the

efficiency of the proposed algorithm.

In order to measure the accuracy of the proposed dis-

tance TSM , we compute the distance between each pair of

triangular tessellations in the database [3, 4] . Two trian-

gular tessellations are considered similar if their distance is

less than the chosen threshold (0.06). We use three (3) types

of Accuracy: Positive Accuracy which is the percentage

of elements well classified within their own class, Nega-
tive Accuracy which is the percentage of elements which

are not attributed to classes in which they are not part, and

General Accuracy which is the percentage of elements that

satisfy both the Positive Accuracy and the Negative Accu-

racy. The accuracy results obtained by TSM are shown in

Table 7.

Figure 5 shows the precision-recall curves, for the

classes associated with the TOSCA Database [3, 4]. We

used the following formulas to compute the precision and

recall of an object from class i.

Recall =
‖objectsfound∈Ci‖

‖Ci‖

Precision =
‖objectsfound∈Ci‖
‖objectsfound‖
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Figure 5. Precision-recall curves for nine distinct objects of the TOSCA Database.

Our method uses a threshold (threshold = 0.06),

which means that only the objects which present a

dissimilarity ≤ threshold are considering in the pro-

cess of computing the recall and precision since, otherwise,

they are automatically classified as dissimilar by our algo-

rithm. As showed in Figure 5, we have obtained excel-

lent precision-recall curves. For instance, gorilla0, horse0,

lioness0, shark0 (only one element), and seahorse0 have a

precision of 100% for a recall that goes from 86% to 100%.

In order to show the efficient of our approach, we com-

pare it with a state-of-the-art set of shape-matching algo-

rithms. The comparison is realized in term of precision and

recall. The set of algorithms with which we compare are:

• CAM: 3D-Matching method using curve analysis [18].

• GeodesicD2: An extension of the Euclidean D2 [12],

computed as a global distribution of geodesic distances

in 3D shapes.

• DSR: The Hybrid Feature Vector, which is a combi-

nation of two view-based descriptors: the depth buffer

and the silhouette and extent radialized function de-

scriptor [20].

• RSH: The Ray-Based Approach with Spherical

Harmonic Representation in which the authors of

[16] align the models into the canonical position, ex-

tract the maximal extents and apply spherical har-

monic.

Figure 6. Precision and Recall plots comparing our approach to

the CAM, GeodesicD2, DSR and RSH approaches on the TOSCA

data set.

The Figure 6 shows the comparison of the Precision

and Recall plot of our approach with these four methods

(CAM, GeodesicD2, DSR and RSH). As the the curve of

our approach is higher than the four approaches to which

it was compared, we conclude that our method performs

better than the others.(in [18], CAM was compared to

GeodesicD2, DSR and RSH).

5. Conclusions

In this paper, we proposed a new matching algorithm

for addressing the problem of comparing deformable 3D

objects represented by graphs (triangular tessellations).

The proposed approach is based on a new decomposition

of triangular tessellations into triangle-Stars. The resulting

triangle-Stars are used to determine the distance between
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triangular tessellation using the Hungarian algorithm. The

proposed algorithm assures a minimum number of disjoints

triangle-Stars, offers a better dissimilarity by covering a

larger area of neighbors in triangle-Stars and used a set of

descriptors which are invariant or at least oblivious under

most common deformations. We proved that the proposed

distance TSM is a pseudo-metric. The analysis of the time

complexity and our experimental results confirm the high

performance and accuracy of our algorithm. In future work,

we project to extend our approach to partial shape matching.
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