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a b s t r a c t 

Kites are huge archaeological structures of stone visible from satellite images. Because of their important 

number and their wide geographical distribution, automatic recognition of these structures on images 

is an important step towards understanding these enigmatic remnants. This paper presents a complete 

identification tool relying on a graph representation of the Kites. As Kites are naturally represented by 

graphs, graph matching methods are thus the main building blocks in the Kite identification process. 

However, Kite graphs are disconnected geometric graphs for which traditional graph matching methods 

are useless. To address this issue, we propose a graph similarity measure adapted for Kite graphs. The 

proposed approach combines graph invariants with a geometric graph edit distance computation leading 

to an efficient Kite identification process. We analyze the time complexity of the proposed algorithms and 

conduct extensive experiments both on real and synthetic Kite graph data sets to attest the effectiveness 

of the approach. We also perform a set of experimentations on other data sets in order to show that the 

proposed approach is extensible and quite general. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

A Kite is an archaeological structure consisting of two long

walls built of stones and arranged within a funnel shape opening

onto an enclosure. The walls can reach a length of several kilome-

ters and the enclosure can cover an area of several hectares. This

yields huge constructions that are visible on satellite images as de-

picted in Fig. 2 (a). Kites have been discovered in the Middle East

since 1920. They were first discovered by the British airmen who

flew over the Jordanian desert during the period of the Mandate.

They were thus called Kites due to the analogy of their shape with

the shape of a Kite. Despite several studies, the issues related to

their age and functions remain without satisfactory answers. Some

rare dating attributes them to the Bronze Age but predated use

of these structures is not excluded. The exact function of these

structures has never been established. Many authors attribute a

hunting function to the Kites, but the hypothesis of a pastoral use

has not been refuted. These uncertainties are due to the extreme

difficulty of obtaining reliable data during field investigations in

contexts where archaeological material is most often absent [7,11] .

Recently, public access to high resolution satellite images (Google
✩ This paper has been recommended for acceptance by Cheng-Lin Liu. 
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arth, Bing) has significantly expanded the number of discovered

ites and also enlarged their geographical spread from the south

f the Arabian Peninsula to the Aralo-Caspian region [1] . The mas-

ive use of Kites, judging by the density of these structures, prob-

bly had territorial implications and socioeconomic importance in

 region that has seen the advent of agriculture and the birth of

he urban phenomenon. Kites are thus an underestimated phe-

omenon. Establishing the duration of their utilization, outlining

heir use and functioning, and trying to identify the population

esponsible for these constructions are the challenges that would

ighlight the significance of this unknown phenomenon. However,

hese issues cannot be seriously addressed without an almost ex-

austive inventory of these structures [4] . For this purpose, auto-

atic recognition of Kites on satellite images offers archeologists

aluable help in understanding this phenomenon. This will allow a

ystematic and homogeneous search in the entire distribution area

f Kites and then in the peripheral regions. 

In this paper, we present a complete framework for Kite recog-

ition on satellite images where Kites are modeled by graphs. This

epresentation is motivated by the natural graph form of Kites.

ite recognition as a graph matching problem is interesting be-

ause it raises several challenges not addressed by existing meth-

ds. In fact, Kite graphs are not connected and may contain several

arts. They have specific geometric forms that distinguish them

rom other constructions. Furthermore, each processed image can

nvolve a large number of graphs, thus implying the use of rapid

http://dx.doi.org/10.1016/j.patrec.2016.05.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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Fig. 1. Example of stars of a graph. 
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ecognition algorithms. To tackle these challenges, we propose a

ulti-level recognition framework that first applies rapidly com-

uted graph invariants to discard non-Kite graphs in the early

tages of the recognition framework. Then, we use a local simi-

arity measure that takes into account the geometric form of Kite

raphs by considering the angles of the form. Finally, a recon-

truction process allows us to consider disconnection within Kite

raphs. We construct a benchmark of Kite graphs from real im-

ges to evaluate the efficiency of our framework. We also gener-

te a synthetic data set to evaluate the resilience of the proposed

ethod to different preservation states of Kites. We compare our

ork with existing methods and we also apply it to other data sets

ainly characterized by the geometric form of the graphs. These

xperimentations show that the proposed framework is a practical

nd efficient Kite recognition tool that applies directly to images. 

A preliminary version of the current paper appeared in [17] . The

urrent paper has been significantly extended with respect to the

nderlying methodology and the experimental evaluation. Firstly,

e added a detailed description of the extraction process of Kites’

raphs from real images and enriched the benchmark with new

ites. We also enlarged our experimentations with a synthetic data

et generated randomly with various levels of deformations. This

ynthetic data set allowed us to attest the resiliency of the pro-

osed approach. Secondly, we added a comparison with existing

pproaches and proved that the proposed approach is quite general

y performing experimentations on the well-known GREC data set

21] . 

The remainder of the paper is organized as follows:

ection 2 presents related works. In Section 3 , we explain the

rocess of constructing and generating of the real and the syn-

hetic data sets used to evaluate our approach. Section 4 describes

he proposed similarity measure and presents its complexity

nalysis. Section 5 reports our experimental results and finally,

ection 6 concludes the paper. 

. Related work 

A graph G = (V, E) is a set of vertices V (also called nodes) con-

ected by a set of edges E ⊆ V × V . A finite number of labels are

ssociated with vertices and/or edges. Graphs are a powerful rep-

esentation tool and a popular formalism used in many applica-

ions of structural pattern recognition and classification [8,27] . For

hese kinds of applications, graph matching and, more generally,

raph comparison is a fundamental issue. Graph matching is the

rocess of finding a correspondence between vertices and edges of

wo graphs that satisfies a certain number of constraints, ensuring

hat similar substructures in one graph are mapped to similar sub-

tructures in the other. Graph matching solutions are classified into

wo wide categories: exact approaches and inexact approaches. Ex-

ct approaches, such as those that test for graph isomorphism or

ub-graph isomorphism [18,26] , refer to the methods that look

or an exact mapping between the vertices and edges of a query

raph and the vertices and edges of a target graph. Inexact graph

atching computes a distance between the compared graphs. This

istance measures how similar (or dissimilar) are the graphs and

eals with the errors that are introduced by the processes needed

o model objects by graphs. Several similarity measures are pro-

osed in the literature using different approaches: graph kernels,

raph embedding, maximum common subgraph, graph invariants,

tc. We refer the reader to [3,27] for more exhaustive surveys. We

ocus here on two main approaches that we use in the rest of the

aper: graph edit distance (GED) and graph invariants. 

Graph edit distance (GED) is one of the most famous and pow-

rful fault-tolerant graph matching measures to determine the dis-

ance between graphs [2,25] . It is based on a kind of graph trans-

ormation called an edit operation. An edit operation is either an
nsertion, a suppression or a substitution of a vertex or an edge in

he graph. A cost function associates a cost to each edit operation.

he edit distance between two graphs is defined by the minimum

osting sequence of edit operations that are necessary to transform

ne graph into the other [24] . This sequence is called an optimal

dit path. Tolerance to noise and distortion is one of the advan-

ages of GED. Unfortunately, computing the exact value of the edit

istance between two graphs is NP-Hard for general graphs and

nduces an exponential computational complexity. This motivated

he apparition of several heuristics that approach the exact value

f GED in polynomial time using different methods such as dy-

amic programming and probability. We refer the reader to [9] for

 detailed survey and we describe here an approach that partitions

he compared graphs into smaller substructures and approximates

ED by computing edit distance between substructures. These

ubstructures are generally stars, i.e., vertices with their direct

eighbors and edges as illustrated in Fig. 1 . These substructures are

alled local descriptions in [22] , stars in [30] , b-stars in [29] and

robe vectors in [20] . The edit distance between substructures is

chieved in O(n 3 ) time steps. Another approximation called BEAM

s proposed in [19] , where the authors present a fast suboptimal

raph edit distance search which is a variant of a standard A 

∗ al-

orithm reducing the search space. Rather than expanding all suc-

essor vertices in the search tree, only a fixed number of vertices

o be processed are kept in the set of open vertices at all times.

he search space is not completely explored, only the vertices

elonging to the most promising partial matches are expanded. 

Graph invariants have been efficiently used to solve the graph

omparison problem in general and the graph isomorphism prob-

em in particular. They are used for example in Nauty [18] , which

s one of the most efficient algorithms for graph and subgraph iso-

orphism testing. A vertex invariant, for example, is a number i (v )
ssigned to a vertex v such that if there is an isomorphism that

aps v to v ′ then i (v ) = i (v ′ ) . Examples of invariants are the de-

ree of a vertex, the number of cliques of size k that contain the

ertex, the number of vertices at a given distance from the ver-

ex, etc. Graph invariants are also the basis of graph probing [16] ,

here a distance between two graphs is defined as the norm of

heir probes. Each graph probe is a vector of graph invariants. A

eneralization of this concept is also used in [28] to compare bio-

ogical data. 

In this paper, we propose to unify the computation speed of

raph invariants to the fault tolerance of GED in a similarity mea-

ure adapted to particular graphs that represent Kites, the archeo-

ogical structures described in Section 1 . 

. Kite graph data set construction 

In this section, we present the process of Kite graphs construc-

ion from real images, and the process of generating a synthetic
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Fig. 2. Illustration of Kite detection. 
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data set of Kite graphs generated randomly. The two data sets (real

and synthetic) are used to evaluate our approach. 

3.1. Real data set construction 

On satellite images, Kites appear as flat surfaces delimited by

a set of lines as illustrated in ( Fig. 2 (a)). To convert Kites’ images

into attributed graphs, the first step is to extract the Kite struc-

tures from the images by edge detection. Edge (segment or line)

detection in images is an intensively studied topic in image analy-

sis [5,12] . Besides, several recent methods such as [10,14,23] give
ood results on satellite images. The main difficulty with such

ethods is to find the adequate settings to obtain an acceptable

egment detection for a specific application. For Kites, we investi-

ated several solutions with various settings and the LSD algorithm

10] gave us the most satisfactory set of segments (see Fig. 2 (b)).

he LSD algorithm is followed by four steps to obtain the final Kite

raphs: 

• Deleting isolated segments : We consider that a segment is iso-

lated if its length is less than a threshold length min and if it has

no neighbors according to a minimum neighborhood distance

neighbor min . 
• Merging neighboring segments : During this step, each pair of

segments that are neighbors according to neighbor min , do not

cross each other and have the same angle with the horizontal

line with a tolerance angle delta , are merged in one segment. 

length min , neighbor min and delta are set during experimentations.

Deleting isolated segments and merging neighboring ones are

illustrated in Fig. 2 (c). 
• Thinning segments : In this step, a skeleton is generated by re-

ducing the width of all the segments to 1 pixel (see Fig. 2 (d))

using the Skeletonize ”ImageJ” method, which is the implemen-

tation of the approach described in [15] . 
• Graph construction : Finally, we construct the graph from the

skeleton by representing lines by edges and ending points of

lines by vertices ( Fig. 2 (e)). Each vertex is labeled with a two-

dimensional attribute giving its position and an n -dimensional

attribute containing the angles between every pair of consec-

utive incident edges. According to the state of preservation of

the Kite, a graph obtained by this process can have a single

connected component (i.e., the Kite is totally preserved) or it

can be composed by two or more connected components (i.e.,

some parts of the Kite have been destroyed). 

We executed our algorithm on 350 images (250 with Kites and

00 without Kites) with different states of preservation. We classi-

ed the obtained graphs into four preservation levels: 

1. State I : The Kite is entire and well preserved. The Kite graph

obtained is perfect and the few disconnections found are cor-

rected manually with the help of the archeologists. 

2. State II : The Kite is entire and well preserved. The Kite graph

may be disconnected but the disconnections are neither fre-

quent nor important. 

3. State III : The Kite graph is very disconnected. Some parts of the

Kite are not present. 

4. State IV : The graph is not a Kite. These graphs are obtained by

executing the algorithm on images that do not contain Kites.

These images are extracted near (geographical positions) the

images containing Kites, so these images have the same reliefs

as the images containing the Kites, and the graphs obtained

represent structures close to Kites. 

Fig. 3 depicts some examples in each case. The characteristics

f the data set are summarized in Table 1 . 

ite graphs Prototype(Real). With the help of the archeologists, we

elected from the graphs in State-I , the most preserved Kites as

rototype Kite graphs. Also, to be able to deal with disconnected

ite graphs without adding significant computing costs, we con-

tructed a prototype graph for each Kite component, namely: an-

enna and enclosure. Fig. 2 (f) and (g) give, respectively, an example

f a Kite enclosure and a Kite antenna. In our experimentation, we

onsider a Graph Antenna, a Graph Enclosure and four different

raph Kites. 
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Fig. 3. Real data set. 

Table 1 

Real Data set Characteristics # G : number of graphs. # Img: number of images. 

a v g(V ) : average number of vertices. a v g(E) : average number of edges. max ( V ): 

maximum number of vertices. max ( E ): maximum number of edges. a v gAng: average 

value of the angles. maxAng maximum angle value. 

All the Data set State-I State-II State-III State-IV 

# G 4081 62 129 1581 2309 

# Img 350 50 100 100 100 

a v g (V ) 26.14 110.84 113.74 30.09 15.59 

max ( V ) 949 316 320 779 949 

a v g (E) 26.28 116.51 122.34 30.56 15.90 

max ( E ) 1081 327 331 864 1081 

a v gAng 91.22 91.19 91.31 91.24 91.15 

maxAng 180 180 180 180 180 

3

 

u

 

 

 

Fig. 4. Kite graphs synthetic data set generation process. 

Table 2 

Synthetic Graph Data set Characteristics # G : number of graphs. a v g(V ) : average 

number of vertices. a v g(E) : average number of edges. max ( V ): maximum number 

of vertices. max ( E ): maximum number of edges. a v gAng: average value of the angles. 

maxAng maximum angle value. 

# G a v g (V ) max ( V ) a v g (E) max ( E ) a v gAng maxAng 

10 0 0 58.44 90 57.41 89 108.89 180 
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.2. Synthetic data set generation 

Random generation of a synthetic data set of Kite graphs offers

s the possibility of: 

• obtaining Kite graphs in several possible preservation states. 
• obtaining Kite graphs with numerous deformations, which may

correspond to the variations in form of Kite components or the

absence of one or more of these components. 
• studying the scalability and resilience of our Kite recognition
process. e
In order to generate a graph representing a Kite ( Fig. 4 (d)),

e generate the graphs of each component, namely the enclosure

raphs and the antenna graphs. The different parameters used to

enerate the graphs of each Kite component are checked and con-

rolled by a team of Kite expert archeologists. 

nclosure graph generation. Due to the form of the Kite enclosure

hich is pseudo-convex, the generation of its graph is based on

 circle equation. The center position c , the number of vertices N

nd the radius circle R are generated randomly according to a min-

mum and a maximum limit defined by the archaeologists. An an-

le Ang is generated according to the number of vertices in the

ite enclosure (see Fig. 4 (a)). The coordinates ( x , y ) of the vertices

f the Kite enclosure are generated according to the circle equa-

ion. To obtain the pseudo-convex form of the enclosure, we vary

he values of the radius ( R ± ε R , i ) and the angle ( Ang ± ε Ang , i )

or each generation of vertex coordinates (see Fig. 4 (b)). 

ntenna graph generation. A Kite antenna is represented by a

raph that is an open chain of edges (at least one edge). The num-

er of edges, the distance between two vertices constituting an

dge, and the inclination angle of an edge are generated randomly

epending on a set of minimum and maximum values of the con-

escending parameters (see Fig. 4 (c)). 

Using the described generation process, we obtain a synthetic

ata set containing 10 0 0 graphs representing Kites. The character-

stics of the synthetic data set are summarized in Table 2 . 

ite graphs Prototype(Synthetic). Using the described process, we

enerate a set of prototype graphs representing: an antenna, an

nclosure and four entire Kites. 
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Table 3 

Notation. 

Symbol Description 

G ( V , E ) undirected labeled graph where V is its vertex set and E its 

edge set. 

Both vertices and edges are labeled. 

V ( G ) vertex set of graph G . 

E ( G ) edge set of graph G . 

deg(v ) degree of vertex v . 
�( G ) the greatest vertex degree in graph G . 

� ( e ) the label of edge e . 

A (G ) the greatest angle in graph G . 

L (G ) the greatest edge label in graph G . 

‖ S ‖ size of the set S . 

(∠ v 1 v 2 v 3 ) G i the angle between the two edges (v 1 , v 2) and (v 2 , v 3) in 

the graph G i . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Example of isomorphic graphs. 
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4. Algorithm overview 

In this section, we describe the proposed Kite recognition so-

lution, which is a hierarchical graph-based approach consisting of:

approaches measuring the distance between two graphs and a re-

construction process. Firstly we present the proposed approaches

measuring the distance between two graphs: a global similarity

measure denoted Global , a geometric local similarity measure de-

noted GeoLocal and two varieties of hierarchical measures that we

call Global GeoLocal and GeoLocal Global which are the result of combin-

ing Global and GeoLocal depending on the defined order. The global

similarity Global is a fast computable measure based on graph in-

variants. This similarity aims to rapidly discard the graphs that

cannot be Kites and avoid unnecessary and more costly compar-

isons. The geometric local similarity GeoLocal is a more accurate

measure based on the geometric form and the structured features

extracted from the graphs. This similarity is based on graph edit

distance GED to deal with the state of preservation of the Kites.

Secondly, we present the reconstruction process, which aims to

verify if the different connected components of the graph iden-

tified as Kite components (enclosure and antenna) constitute a

Kite. Identification of the different connected com ponents of the

graph as Kite components is realized using one of the proposed

approaches of graph similarity measure, namely: Global , GeoLocal

or one of two hierarchical measures Global GeoLocal or GeoLocal Global .

Finally, we present the computational complexity of the proposed

algorithm. 

Table 3 summarizes the notations that we use in the remainder

of the paper. 

4.1. Global similarity 

Global similarity computes graph invariants. We consider the

number of vertices of the compared graphs, the labels of the edges,

which correspond to the length of the Kite walls, and the angles

between edges. So, the global similarity between two graphs G 1 

and G 2 is given by: 

Gl obal (G 1 , G 2 ) = w 1 ∗ d Vertices (G 1 , G 2 ) 
+ w 2 ∗ d Edges (G 1 , G 2 ) 
+ w 3 ∗ d Angles (G 1 , G 2 ) 
+ w 4 ∗ d Con v ex (G 1 , G 2 ) 

(1)

where w i is a weighting coefficient with 

∑ i =4 
i =1 w i = 1 , d Vertices ( G 1 ,

G 2 ) compares the order of the two graphs. 

d Vertices (G 1 , G 2 ) = 

∣∣‖ V ( G 1 ) ‖ − ‖ V ( G 2 ) ‖ 

∣∣
Max 

(‖ V ( G 1 ) ‖ , ‖ V ( G 2 ) ‖ 

) (2)

d Edges ( G 1 , G 2 ) compares the global size of the two Kites by com-

paring the distances reported on the edges of the corresponding
raphs. 

 Edges (G 1 , G 2 ) = 

∣∣ ‖ E(G 1 ) ‖ ∑ 

� (e i ) 
i =1 

−
‖ E(G 2 ) ‖ ∑ 

� (e j ) 
j=1 

∣∣

Max 
( ‖ E(G 1 ) ‖ ∑ 

� (e i ) 
i =1 

, 
‖ E(G 2 ) ‖ ∑ 

� (e j ) 
j=1 

) (3)

d Con v ex (G 1 , G 2 ) and d Angles ( G 1 , G 2 ) compare the global geometric

orms of the two Kites based on the convexity of the angles and

he total value of the angles, respectively: 

d Con v ex (G 1 , G 2 ) = 

∣∣ ‖ Angles G 1 <Con v exityT h ‖ 
‖ Angles G 1 ‖ 

−‖ Angles G 2 <Con v exityT h ‖ 
‖ Angles G 2 ‖ 

∣∣ (4)

here Angles G i denotes the set of angles of graph G i and

on v exityT h is an angle threshold at most equal to 180 °. However,

t will be defined according to the form of the Kites. 

 Angles (G 1 , G 2 ) = 

| ∑ 

Angle i,G 1 −
∑ 

Angle j,G 2 | 
Max ( 

∑ 

Angle i,G 1 , 
∑ 

Angle j,G 2 ) 
(5)

here Angle i , G denotes the i th angle of graph G . 

The algorithm takes as inputs a set of prototype graphs, which

re: G Antenna , G Enclosure , four different G Kite and a query graph. For

ach connected component of the query graph, the algorithm re-

urns the most similar Kite component. 

.2. Geometric local similarity 

The geometric local similarity measure GeoLocal is a distance

ased on the approximation of the graph edit distance that com-

ares the graphs using local descriptions of substructures (see

ig. 1 ). However, unlike the approaches proposed in [20,22,30] ,

n our approach we extended local descriptions by considering

ngles in addition to degrees of vertices and labels of the edges.

his allows us to distinguish between two isomorphic graphs

ith different geometry ( Fig. 5 (a)). In fact, almost all existing

raph similarity measures compare the structures of graphs in

erms of vertices, edges and their labels, but they do not consider

he geometric form of these graphs. Some authors even use the
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Fig. 6. The graphs G1 and G2 in Example 2 . 
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ngle as an attribute or a label associated with an edge [21] .

his attribute represents the angle between the considered edge

nd a horizontal or a vertical line landmark ( Fig. 5 (d, e)). The

rawback of this representation is that the value of the angle may

hange if a rotation is applied. This is not a problem in some

raph representations such as graphs representing letters, digits,

tc. However, considering a model that resists rotation and other

eformations is very important when the graphs represent objects

ith specific forms as is the case of Kite graphs. Thus, in our

ramework two graphs are isomorphic if they also have the same

orm according to the following definition. 

efinition 1 (geometrical isomorphic) . Let G 1 ( V 1 , E 1 ) and G 2 ( V 2 ,

 2 ) be two graphs. G 1 and G 2 are geometrical isomorphic if they are

somorphic and have the same geometric form. 

xample 1. Let G i ( V , E ) where i = 1 , . . . , 5 , five graphs, such that:

 = { v 1 , v 2 , v 3 } and E = { e 1 , e 2 , e 3 } ( Fig. 5 (a, b)). We can easily

nd a mapping between the set of vertices of G 1 and G 2 ensuring

dge preservation, thus G 1 and G 2 are isomorphic. However, they

re not geometrical isomorphic because they do not have the same

eometric form ( (∠ v 1 v 2 v 3 ) G 1 � = (∠ v 1 v 2 v 3 ) G 2 ), (see Fig. 5 (a)). G 3 , G 4

nd G 5 (see Fig. 5 (b)) are geometrical isomorphic : because they

re isomorphic and have the same geometric form ( (∠ v 1 v 2 v 3 ) G 3 =
(∠ v 1 v 2 v 3 ) G 4 = (∠ v 1 v 2 v 3 ) G 5 ). However, if we consider angles be-

ween edges and the horizontal axis x , G 3 and G 5 in ( Fig. 5 (d, e))

re isomorphic but not geometrical isomorphic : ( α1 ,G 3 
� = β1 ,G 5 

and

2 ,G 3 
� = β2 ,G 5 

). 

In order to compute the geometric local similarity, each vertex

 is represented by a signature i.e. , a vector defining its local struc-

ure as follows: s (v ) = { deg(v ) , { Ang i , � (e i, 1 ) , � (e i, 2 ) } i =(deg(v ) −1) 
i =1 

} ,
here: 

• deg(v ) is the degree of the vertex v . 
• � ( e i ,1 ) and � ( e i ,2 ) are the labels (weights) of the two edges e 1 

and e 2 constituting the angle Ang i . � ( e i ,1 ) and � ( e i ,2 ) are ranked

in descending order. 
• The triplets { Ang i , � ( e i ,1 ), � ( e i ,2 )} are ranked according to the an-

gle Ang i in descending order. 
• All the vertices are represented by signatures i.e., vectors which

have the same size: size = 1 + ((�(G 1 , G 2 ) − 1) ∗ 3) . 
• �( G 1 , G 2 ) is the greatest vertex degree in the compared graphs

G 1 and G 2 . 
• If a vertex v has a degree less than �( G 1 , G 2 ), the rest of the

vector is completed with zeros . 

The similarity measure d between two signatures s 1 and s 2 is

omputed as follows: 

(s 1 , s 2 ) = 1 −
i =3 ∑ 

i =1 

ω i ∗ F i (6)

he functions F i are defined as follows: 

 1 = 

| deg(v 1 ) − deg(v 2 ) | 
Max (�(G 1 ) , �(G 2 )) 

(7) 

 2 = 

Max (�(G 1 ) , �(G 2 )) ∑ 

k =1 

| � (e 1 ,k ) − � (e 2 ,k ) | 
Max (�(G 1 ) , �(G 2 )) ∗ Max (L (G 1 ) , L (G 2 )) 

(8) 

F 3 

= 

Max (�(G 1 ) , �(G 2 )) −1 ∑ 

k =1 

| Ang 1 ,k − Ang 2 ,k | 
(Max (�(G 1 ) , �(G 2 )) − 1) ∗ Max (A (G 1 ) , A (G 2 )) 

(9) 
where ω i are weighting coefficients with 

∑ i =3 
i =1 ω i = 1 , Ang i , k is the

 th angle of vertex v i . F i =1 ... 3 compares, respectively, the degree of

he vertices, the labels of edges and the angles. 

The Geometric Local Similarity GeoLocal aims to determine the

est matching between the signatures (defining the local structure

f each vertex) associated with the two compared graphs. Formally,

et G 1 and G 2 be two graphs, S 1 and S 2 their corresponding sets of

ignatures, and M the set of all possible matching between S 1 and

 2 . The similarity GeoLocal ( S 1 , S 2 ) is formulated as follows: 

eoLocal(S 1 , S 2 ) = 1 −
max 
m ∈ M 

∑ 

s i ∈ S 1 , m (s i ) ∈ S 2 
d(s i , m (s i )) 

max (‖ S 1 ‖ , ‖ S 2 ‖ ) 
(10)

omputation of GeoLocal ( S 1 , S 2 ) is equivalent to solving the as-

ignment problem which is a fundamental combinatorial optimiza-

ion problem that aims to find the minimum/maximum weight

atching in a weighted bipartite graph. To solve this assignment

roblem, we define a n × n matrix D , where n = max (‖ S 1 ‖ , ‖ S 2 ‖ ) .
ach element D i , j of the matrix represents the similarity measure

 ( s i , s j ) between a signature s i in S 1 and a signature s j in S 2 . In

he case of ‖ S 1 ‖ � = ‖ S 2 ‖ , the smallest set of signatures is com-

leted by (max (|| S 1 || , || S 2 || ) − min (|| S 1 || , || S 2 || )) empty signatures

. The similarity between an empty signature ε and a signature s is

omputed by the formula ( Eq. (6 )) and corresponds to the cost of

dding s to the small graph (or of deleting s from the large graph).

We apply the Hungarian algorithm [13] on the matrix D in or-

er to find the best assignment in O(n 3 ) time. 

The resulting distance (dissimilarity) is compared to a threshold

h ∈ [0, 1] defined by an expert or by experimentation, in order to

ecide if the compared graphs are similar or not. Like the algo-

ithm of Global , the algorithm of GeoLocal takes as inputs a set of

rototype graphs, which are: G Antenna , G Enclosure , four different G Kite 

nd a query graph. For each connected component of the query

raph, the algorithm returns the most similar Kite component. 

xample 2. Let G 1 and G 2 be two graphs (see Fig. 6 ), S 1 and

 2 their corresponding sets of signatures, such that ‖ S 1 ‖ = 3 and

 S 2 ‖ = 4 . Let D , be the matrix of similarities between S 1 and S 2 .

here D i, j = d(s i , s j ) . ‖ S 1 ‖ < ‖ S 2 ‖ , thus we add an ε signature to

 1 and we complete the matrix D by d(ε, s 2 , j=0 ... 3 ) . 

s 1 , 0 
s 1 , 1 
s 1 , 2 
ε 

s 2 , 0 s 2 , 1 s 2 , 2 s 2 , 3 ⎛ 

⎜ ⎝ 

0 . 96 0 . 33 0 . 58 0 . 96 

0 . 54 0 . 75 1 0 . 54 

0 . 92 0 . 29 0 . 54 1 

0 . 92 0 . 04 0 . 29 0 . 75 

⎞ 

⎟ ⎠ 

The max sum is 3.25. The normalized dissimilarity is

eoLocal(S 1 , S 2 ) = 1 − 3 . 25 
4 = 0 . 1875 . 

The signature s 2,0 (of the node v 1 in G 2 ) is deleted ( s 2,0 → ε). 
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4.3. Hierarchical similarity measure 

In this section, we present two hierarchical measures that we

call Global GeoLocal and GeoLocal Global which are the result of com-

bining the global similarity measure Global and the geometric local

similarity measure GeoLocal depending on the defined order. 

Global geometric-Local similarity. The Global geometric-Local simi-

larity Global GeoLocal is a hierarchical similarity measure, which aims

to measure the distance between two graphs using firstly the

global similarity measure Global , then using the geometric local

similarity measure GeoLocal if necessary. The main idea is to mea-

sure the distance between the two graphs using Global . If the dis-

tance obtained is less than a specific threshold, which means that

the two graphs are similar according to Global , then we check this

result using GeoLocal . Otherwise, the two graphs are not similar,

which means that we do not need to use GeoLocal . Global GeoLocal 

aims to enhance time processing of Kite graphs by first computing

invariants on the graphs. Formally, let: G 1 and G 2 be two graphs,

S 1 and S 2 the set of signatures of G 1 and G 2 respectively, th ∈ [0,

1] a threshold and d 1 = Gl obal (G 1 , G 2 ) . 

Global GeoLocal (G 1 , G 2 ) = 

{
d 1 , i f d 1 > th 

GeoLocal(S 1 , S 2 ) , otherwise 
(11)

Geometric-Local Global similarity. Like Global GeoLocal , the Geometric-

Local Global similarity GeoLocal Global is a hierarchical similarity

measure, which aims to measure the distance between two graphs

using firstly GeoLocal , then using Global if necessary. The main idea

is to measure the distance between the two graphs using GeoLo-

cal . If the distance obtained is less than a specific threshold, which

means that the two graphs are similar according to GeoLocal , then

we check this result using Global . Otherwise, the two graphs are

not similar, which means we do not need to use Global . However,

only the vertices assigned in the phase of GeoLocal will be consid-

ered in the second phase using Global . In the case where the two

graphs have the same number of vertices, all the vertices will be

considered in the second phase, i . e ., Global . GeoLocal Global aims to

improve the graph invariants in the second level by only consider-

ing the assigned vertices in the first level using GeoLocal . Formally,

let: G 1 and G 2 be two graphs, G 2 is the graph prototype, S 1 and

S 2 the sets of signatures of G 1 and G 2 respectively, th ∈ [0, 1] a

threshold, d 2 = GeoLocal(S 1 , S 2 ) and G 

′ 
1 is the subgraph induced by

the vertices of G 1 assigned in the first phase using GeoLocal . 

GeoLocal Global (G 1 , G 2 ) = 

{
d 2 , i f d 2 > th 

Gl obal (G 

′ 
1 , G 2 ) , otherwise 

(12)

4.4. Reconstruction process 

Each connected component from the whole graph represent-

ing the query image is compared to the set of prototype graphs

( G Antenna , G Enclosure and four different G Kit e ), using the proposed

similarity measure ( GeoLocal , Global , Global GeoLocal or GeoLocal Global ).

Consequently, each connected component (a query graph) is clas-

sified as Kite, a part of Kite or not a Kite nor a part of Kite. When

a query graph passes the considered similarity measure ( GeoLo-

cal , Global , Global GeoLocal or GeoLocal Global ) with more than one con-

nected component classified as a Kite part and at least one of them

is classified as an enclosure, we need to know if these Kite parts

are parts of the same Kite or belong to different Kites. This is the

aim of the reconstruction step that uses the coordinates of the ver-

tices to eventually reconstruct the entire Kite from different com-

ponents: i.e., enclosure and antennas. The principle is to associate

a subset of Kite parts classified as antennas to a Kite part clas-

sified as an enclosure, taking into account the distance between
hem and their orientations. The aggregated similarity Sim aggre of

he reconstructed Kite i , is given by: 

im aggre (Kite i ) = ψ ∗ Sim (E i ) + 

j= n ∑ 

j=1 

μ ∗ Sim (A i, j ) (13)

here: ψ + μ = 1 , Sim ( E i ) is the similarity attributed to the en-

losure of the reconstructed Kite i , n is the number of antennas

nd Sim ( A i , j ) is the similarity attributed to an antenna j of the re-

onstructed Kite i . 

.5. Complexity study 

For the Geometric local similarity measure GeoLocal , the most

mportant part, in term of complexity, is the one solving the as-

ignment problem. We used the Hungarian algorithm [13] to find

he best assignment in O(n 3 ) time, where n is the maximum num-

er of vertices in the two compared graphs. Consequently, the time

omplexity of GeoLocal is O(n 3 ) . The Global similarity measure

lobal is based on a graph invariant, which is linear in terms of

omputational complexity. Thus, the time complexity of Global is

(n ) , where n is the maximum number of vertices in the two com-

ared graphs. 

. Experimental results 

For evaluation, we used all the available graphs in the real data

et described in Section 3.1 and the synthetic data set described

n Section 3.2 . We also used a well-known graph data set of sym-

ols from architectural and electronic drawings named GREC [21] ,

hich is one of the data sets of the IAM graph database repos-

tory. The GREC data set is composed of 1100 undirected graphs

istributed over 22 classes from the original GREC database [6] .

he GREC data set is split into a training and a validation set, each

f size 286, and a test set of size 528. 

We conducted four series of experiments to evaluate the ro-

ustness and accuracy of our similarity measures. The first three

eries of experiments are realized on the real and synthetic Kite

raph database, while the fourth experimentation is realized on

he GREC data set. We compared our approach with two ap-

roaches from the state-of-the-art based on local structure com-

arison: 

• GED Bipartite : a GED based on a bipartite assignment of vertices

and their local structures [22] . 
• Beam GED : a simple and fast suboptimal GED based on beam

search [19] . 

The proposed distances GeoLocal and Global are parameterized

istances having a set of parameters αk allowing different config-

rations. The default value is: 
∑ 

αk = 1 , ∀ k and Con v exityT h =
50 ◦. In addition, we defined a threshold in order to improve clas-

ification accuracy. The parameters αk and the threshold may be

pecified by inspection or by using machine learning techniques.

n this paper, for simplicity, we attribute to all the parameters of

ur methods and the methods with which we compare ( GED Bipartite 

nd Beam GED ) their default values. However, for each approach we

hoose the threshold giving the best accuracy. The default pa-

ameters of GED Bipartite and Beam GED are: the same cost for ver-

ex/edge deletions/insertions which is 1, the weighting parameters

er vertex/edge is the same 1, the same cost for vertices and edges

 v ert exC ost = edgeC ost) and for Beam GED , the size of the OPEN set

s 10. 

In the first experiment, we show the impact of using the re-

onstruction process in the obtained accuracy. Table 4 depicts the

esults obtained depending on the use or not of the process of re-

onstruction ( T hreshold = 0 . 28 ). These experiments are conducted

n the real Kite data set. 
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Table 4 

The impact of the reconstruction process on the classification. 

Methods Reconstruction State-I State-II State-III State-IV 

Global Yes 93.87% 96% 83% 77% 

No 89.79% 95% 81% 80% 

GeoLocal Yes 100% 98% 91% 78% 

No 93.87% 93% 87% 78% 

Global GeoLocal Yes 91.83% 94% 78% 78% 

No 87.75% 92% 76% 82% 

GeoLocal Global Yes 93.87% 95% 85% 78% 

No 89.79% 93% 83% 77% 

Table 5 

Classification on the Kite data set. 

Methods Threshold State State State State Synthetic 

I II III IV data set 

Global 0.28 93.87% 96% 83% 77% 98% 

GeoLocal 0.28 100% 98% 91% 77% 100% 

Global GeoLocal 0.28 91.83% 94% 78% 78% 98% 

GeoLocal Global 0.28 93.87% 95% 85% 78% 98% 

GED Bipartite 0.40 36.53% 41% 75% 11% 41.3% 

Beam GED 0.10 20.20% 28% 75% 4 4.4 4% 75% 
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Fig. 7. Runtime vs. number of vertices. 

Table 6 

Classification on the GREC data set. 

Methods GeoLocal GED Bipartite Beam GED 

GREC data set 96.19% 86.30% 76.70% 
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We can see that the four methods are globally more accurate

ith considering the process of reconstruction. This shows the im-

ortance of using the reconstruction process. 

In the second series of experiments, we evaluated the accu-

acy of the proposed approach by performing classification. These

xperiments are realized on both the real and the synthetic Kite

ata set. Table 5 depicts the results obtained by our approaches

nd the approaches with which we compare, using the ade-

uate threshold. We can see that our approaches GeoLocal , Global ,

lobal GeoLocal and GeoLocal Global are more accurate than GED Bipartite 

nd Beam GED at all the levels of the real and the synthetic Kite

ata set. This confirms that considering the geometric form (an-

les) has a high added value for Kite recognition. We can also

ee that GeoLocal is more accurate than Global , Global GeoLocal and

eoLocal Global at all the levels of the real and the synthetic Kite

ata set. However, Global GeoLocal and GeoLocal Global are slightly bet-

er in the negative data set ( State IV ) of the real data set. Al-

hough, GeoLocal achieves better classification accuracy compared

o Global GeoLocal and GeoLocal Global . However, use of the hierarchical

easures Global GeoLocal and GeoLocal Global avoids unnecessary com-

arison in the second level, thus the general runtime on the data

et is better. We note also that GeoLocal Global achieves better clas-

ification accuracy compared to Global GeoLocal at all the levels of

he real and the synthetic Kite data sets. However, Global GeoLocal 

chieves a better general runtime on the data set, due to the fact

hat Global is faster than GeoLocal . 

In the third series of experiments we evaluated the scalability

f our approach over an increasing number of vertices in the query

raphs. These experiments are realized on both the real Kite data

et and the synthetic Kite data set. From the 4081 graphs of the

eal Kite data set and 10 0 0 graphs of the synthetic Kite data set,

e constructed a set of query groups with the same number of

ertices. The number of vertices vary from 2 vertices to 949 ver-

ices in the real data set and from 30 vertices to 85 vertices in the

ynthetic data set. 

Fig. 7 shows the average runtime performance of Global , GeoLo-

al , GED Bipartie and Beam GED in both the real Kite data set ( Fig. 7 (a))

nd the synthetic Kite data set ( Fig. 7 (b)). The X -axis shows the

umber of vertices contained in the query graph and the Y -axis

he average runtime, in log scale, obtained over the query group

f the corresponding graph size when compared to the set of Kite

rototype graphs. This figure clearly shows the interest of using
he global similarity measure Global , which is largely faster than

he geometric local similarity measure GeoLocal . Fig. 7 also shows

hat GeoLocal is faster compared to GED Bipartie and Beam GED . The ap-

roaches with which we compare ( GED Bipartie and Beam GED ) are ap-

roximatively equivalent with a little difference making GED Bipartie 

light faster than Beam GED . The runtime performance shown in the

gure confirms the theoretical time complexity, which is linear for

lobal and polynomial for GeoLocal and GED Bipartie . However, Ge-

Local has a better time complexity, which is O(( max (n , m )) 3 )

ompared to GED Bipartie with O((n + m ) 3 ) , where n and m are the

umber of vertices of the two compared graphs. Finally, we evalu-

ted the accuracy of the proposed approach by performing classi-

cation on the GREC data set. We compare the results obtained by

ur approach GeoLocal with the results obtained by GED Bipartite and

eam GED in [22] . Table 6 depicts the results obtained by our ap-

roach GeoLocal using the adequate threshold (0.07) and GED Bipartite 

nd Beam GED . 

We can see that our method GeoLocal is more accurate than the

wo methods with which we compare GED Bipartite and Beam GED on

he GREC data set. This confirms that considering the geometric

orm (angles) has a high added value for object recognition with

pecific geometric structures. This also shows that our method is

xtensible on other types of data and proves that the proposed ap-

roach is quite general. 
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6. Conclusions 

In this paper, we proposed a graph-based approach for Kite

recognition. We presented a complete Kite recognition process in

satellite images. We introduced a graph representation of Kites and

proposed a novel geometric hierarchical graph matching based on

graph edit distance and graph invariants. The proposed method

takes into account the geometric form of the graphs in addition

to their structures. We also proposed an automatic process for ex-

tracting and transforming Kites in satellite images into a set of

graphs. Using this process, we construct from real images a bench-

mark of Kite graphs that can be used by other researchers. Both

the theoretical time complexity and the experimental results on

real and synthetic Kite data sets confirm the high performance of

our approach. Furthermore, the experimentation performed on the

GREC data set proves that the proposed approach is extensible and

quite general. 
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