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Abstract

Recent works on multi-agent sequential decision making us-
ing decentralized partially observable Markov decision processes
have been concerned with interaction-oriented resolution tech-
niques and provide promising results. These techniques take ad-
vantage of local interactions and coordination. In this paper, we
propose an approach based on an interaction-oriented resolution
of decentralized decision makers. To this end, distributed value
functions (DVF) have been used by decoupling the multi-agent
problem into a set of individual agent problems. However ex-
isting DVF techniques assume permanent and free communi-
cation between the agents. In this paper, we extend the DVF
methodology to address full local observability, limited share of
information and communication breaks. We apply our new DVF
in a real-world application consisting of multi-robot exploration
where each robot computes locally a strategy that minimizes the
interactions between the robots and maximizes the space cov-
erage of the team even under communication constraints. Our
technique has been implemented and evaluated in simulation and
in real-world scenarios during a robotic challenge for the ex-
ploration and mapping of an unknown environment. Experimen-
tal results from real-world scenarios and from the challenge are
given where our system was vice-champion. in simulation and
in real-world scenarios during a robotic challenge for the ex-
ploration and mapping of an unknown environment by mobile
robots that could be seen as more general than Pentagone or
ISR environments. Experimental results from real-world scenar-
ios and from the challenge are given where our system was vice-
champion.

*In sabbatical year at LAAS-CNRS.



Introduction

Recent advancements concerning the resolution of decision-theoretic models based
on Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs)
allowed a notable increase in the size of the problems that have been solved. Espe-
cially, one of the directions that attracts more and more from attention this commu-
nity is to take advantage of local interactions and coordination with an interaction-
oriented (IO) resolution [7, 11, 18]. Such approaches relax the most restrictive and
complex assumption consisting in considering that agents are permanently in inter-
action. They become a promising direction concerning real-world applications of
decentralized decision makers.

The approach developed in this paper is primary motivated by using a Dec-
POMDP solved with IO techniques for an exploration and mapping multi-robot
system. This system has been developed and applied successfully in real-world
scenarios during a DGA!/ANR? robotic challenge named CAROTTE for the ex-
ploration, mapping and object recognition by mobile robots. In this paper, the dis-
tributed SLAM aspect is out of the paper scope and we focus only on the decision
model. We consider that robots are independent and can share limited information
by communication leading to some kind of observability completion. However a
particularly significant challenge is the communication as potential communication
breaks can happen leading to a loss of information that are shared between robots.

This paper concerns the global and local coordination of decentralized deci-
sion makers under the assumptions of full local observability, limited share of in-
formation between the agents and breaks in communication. Global coordination
consists in allocating appropriately goals for the individual robots and minimiz-
ing the interactions that lead to conflicts between the members of the team. Local
coordination is the resolution of close interactions. The assumptions we made are
not simultaneously addressed in the litterature. For instance existing IO resolutions
of decision models do not consider together these hypotheses; classical negotia-
tion based techniques assume permanent communication; and existing multi-robot
exploration approaches that consider communication constraints only cope with
limited communication range issue and do not address the problem of failures as
stochastic breaks in communication. So we introduce in this paper a new 10 res-
olution method for decentralized decision models that handles limited share of
information and breaks in communication.

In the sequel, we present first related works about the interaction-oriented res-
olution of Dec-POMDPs and multi-robot exploration. This is followed by a back-
ground of our work. Second, we introduce the DVF approach and its extension to
support communication breaks. Then the application of this model to multi-robot
exploration is detailed. Finally, experiments from real robot scenarios and simula-
tions are given to demonstrate our method effectiveness when communication is
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Figure 1: Decision models according to interdependency, communication and ob-
servability.

not reliable before concluding.

Related Work

Interaction-Oriented Models

Much of the work in multi-agent models address the Dec-POMDP complexity of
resolution through one or more of the three directions: observability depending on
whether each agent has complete or partial knowledge about the state of the world;
communication according to the possibility and the cost of sharing information be-
tween the agents; and interdependency exploiting the structure of the problem such
as locality of interaction, decomposition of rewards and independence between
the agents. All existing Dec-POMDPs approaches use different assumptions about
these directions. Fig. 1 summarizes some of these models and how they are related
with parameters to consider to switch from one to another. Single-agent approaches
(MDP and POMDP) depend on whether the agent’s observability about the world
is complete or partial.

As regards multi-agent models and the observability, the model moves from
Dec-POMDP to Dec-MDP when the collective observability is complete and to
MMDP when the individual observability is full. Recent promising works exploit
the interdependency with an interaction-oriented (10) resolution of Dec-POMDPs.
Introducing some structures leads to new models which are based on a set of in-
teractive individual decision making problems and thus reduces the complexity of



solving Dec-POMDPs. The ND-POMDP [12] model is a static interactions model
approach, meaning that an agent is always interacting with the same subset of
neighbors. In case of full collective observability and static graph of interactions,
Dec-MDP moves to OC-Dec-MDP [3, 4]. Interacting all the time with the same
agents is not realistic. Thus models have been proposed that use dynamic inter-
actions such that each agent interacts with an evolving set of agents: IDMG [17]
and DyLIM [7]. In all of these models, no explicit communications are assumed
except for the IDMG model which has unlimited and free communication between
agents interacting together. Few models study the cost of communication such as
COM-MTDP [15].

Multi-Robot Exploration

Multi-robot exploration has received considerable attention in recent years. Vari-
ous exploration strategies have been proposed that mainly differ by the way global
coordination is achieved. In [6, 19], global coordination is centralized. The util-
ity of each target is computed as a compromise between the gain expected at this
target (expected area discovered when the target will be reached taking into ac-
count the possible overlap in between robot sensors) and the cost for reaching this
target. Global coordination is accomplished by assigning different targets to the
robots, thus maximising the coverage and reducing the overlap between explored
areas of each robot. Global coordination can also be decentralized as in [21] where
robots bid on targets to negotiate their assignments. Most approaches assume that
robots maintain constant communication while exploring to share the information
they gathered and their locations. However, permanent and free communication is
seldom the case in practice and a significant challenge is to account for potential
communication drop-out and failures. Some recent approaches consider the con-
straint of a limited communication range. Burgard et al. [6] apply their multi-robot
strategy to each sub-team of robots which are able to communicate with each other.
This leads in the worst case to a situation in which all robots individually explore
the whole environment. Powers, Balch, and Lab [13] try to maintain a team con-
nectivity during the exploration for the robots to remain in constant communica-
tion. Hoog, Cameron, and Visser [8] impose periodic constraints where the robots
must meet at specific rendez-vous times in order to share information.

Background

Decentralized - POMDPs

Dec-POMDP [2] is an extension of POMDP for decentralized control domains.
A Dec-POMDP is defined with a tuple < 1,5, A, T, R,Q, O >. I is the number
of agents, S the set of joint states and A = {A;} the set of joint actions®. T :

3A state of the problem can be written with a tuple s = (s1, ..., s7) such that s; is the state of
robot j. A; defines the set of actions a; of robot 4.



S x A xS — [0;1] is a transition function and R : S x A — R a reward
function. {2 is a set of observations an agent can receive about the environment and
O : SxAxSx8 — [0;1] an observation function. If the global state of the system
is collectively totally observable, the Dec-POMDP is reduced to a Dec-MDP.

We can see an MDP [14] as a Dec-MDP where I = 1. It is defined with a
tuple < S, A, T, R >. The goal of MDP planning is to find a sequence of actions
maximizing the long-term expected reward. Such a plan is called a policy 7 : S —
A. An optimal policy 7* specifies for each state s the optimal action to execute at
the current step assuming the agent will also act optimally at future time steps. The
value of 7* is defined by the optimal value function V* that satisfies the Bellman
optimality equation:

* / *x !

V*(s) = max(R(s,a) +’Y;T(Saaa3 V() (1)
where +y is the discount factor. Solving a Dec-POMDP is done by computing the
optimal joint policy. However the time complexity is NEXP-complete [2], that is
incredibly hard. Recent interaction-oriented resolution methods of Dec-POMDPs
presented in our related works reduce this complexity.

Distributed Value Functions

Distributed value functions (DVF) have been introduced by [16] as a way to dis-
tribute reinforcement learning knowledge through different agents in the case of
distributed systems. In a recent paper, we formalize 10 resolution of Dec-MDPs
with DVFs [10]. In our method, DVF describes the Dec-MDP with two classes: no-
interaction class represented as a set of MDPs, one per agent; and the interaction
class for close interactions. The Dec-MDP is solved as a collection of MDPs and
the interactions between MDPs are considered by passing some information be-
tween agents. This leads to a significant reduction of the computational complexity
by solving Dec-MDP as a collection of MDPs. Thus, the NEXP complexity of solv-
ing a DecMDP is reduced to the complexity of solving a set of MDPs (polynomial),
one per agent. Each agent computes locally a strategy that minimizes conflicts, i.e.
that avoids being in the interaction class. The interaction class is a separate layer
solved independently by computing joint policies for these specific joint states.

DVF technique allows each agent to choose a goal which should not be con-
sidered by the others. The value of a goal depends on the expected rewards at this
goal and on the fact that it is unlikely selected by other agents. In case of permanent
communication, an agent ¢ computes its DVF V; according to :

Vse S Vi(s) = max (R(sja) + Z T(s,a,s")

ac
s'esS

Vi(s') = > fisPr(s'|55) Vi ()] 2
i



where P,.(s'|s;) is the probability for agent j of transitioning from its current state
s; to state s’ and f;; is a weighting factor that determines how strongly the value
function of agent j reduces the one of agent 7. Thus each agent computes strategies
with DVF so as to minimize interactions. However when situations of interaction
occur, DVF does not handle those situations and the local coordination must be
resolved with another technique. For instance joint policies could be computed
off-line for the specific joint states of close interactions.

New Distributed Value Functions

DVF provides an interesting way to manage the coordination of decentralized de-
cision makers. However, it assumes a permanent and free communication. In this
section, we relax the strong assumptions about communication.

Common Settings

We assume that the local observability of each agent is total so our approach takes
place in the Dec-MDP framework. We also assume that each agent shares with the
others only its current state. So if the communication never fails, agent 7 knows at
each step ¢ the state s; € S of each other agent j. When the communication breaks,
the states of other agents are not known at each time step. We make the assumption
that s; € S is the last known state of another agent j at time ¢;. In other words, t;
is the latest time step where the communication between agents 7 and j succeeded.
At the current time ¢, agent ¢ knows that agent j was at state s; At; =t — ¢; time
steps ago.

New Distributed Value Functions

Given our limited share of information, the agents cannot exchange information
about their value functions. However each robot ¢ can compute all V; by empathy.
Second, to be robust to breaks in communication, we must consider that the states
of other agents are not known at each time step. Thus eq. 2 can be rewritten as
following:

Vse S Vi(s)= max (R(s,a) +y Z T(s,a,s)

ac
s'eS

Vi(s") = figPr(s'|s5, Aty) Vi (s")] A3)
J#

where P,.(s'|s;, At;) is the probability for agent j of transitioning to state s’ know-
ing that j was at state s; At; time steps ago. In case the communication never fails,
the last known state of an other agent j is at current time ¢; = ¢ so At; = 0. We



set:
PT(S/|SJ', Atj = 0) = Pr(sllsj) (4)

Thus eq. 3 is a new DVF that can be used with or without permanent communica-
tion.

However, one challenge to compute new DVF is the estimation by agent ¢ of
the transition probability of another agent j knowing that it was at state s; At; time
steps ago. This could be evaluated with:

Po(s|sj, Aty)=n > Pu(r,Aty) 5)
T€Traj(s;,s’)

where 7 is a normalizing constant, T'raj(s;, s’) is the set of trajectories from s;
to s’ and P, (7, At;) the probability that agent j follows the trajectory 7. The sum
over all possible trajectories is the belief that agent j could be at state s’ knowing
that it was at s; At; time steps ago. The computation complexity of this prob-
ability depends on many factors. First according to the model used, computing
the set of trajectories from one state to another in an MDP could quickly become
very complex. However, we believe that the complexity could be reduced by using
structured models, such as Voronoi diagrams in our robotic exploration case. Sec-
ond the targeted application could also lead to a simplification of this probability
computation, as for instance the exploration case detailed in the next section.

Multi-Robot Exploration

Our approach is primary motivated by a real-world application of mobile robots to
explore an unknown environment under breaks in communication constraints. We
consider that the state of the robot is known at decision time, that each robot has
access to a map updated with all explored areas and to the positions of the others
(while the robots can communicate).

New Distributed Value Functions for Multi-Robot Exploration

In case of breaks in communication, the DVF algorithm (eq. 3) is difficult to apply
due to the computational complexity of the transition probability P, (s'|s;, At;).
Similarly to [6], we can consider that a robot ignores the information about its
neighbors with which the communication failed i.e.:

Vse S Vi(s) = max (R(sja) + Z T(s,a,s")

ac
s'esS

Vi(s') = > fiPr(s|s))V;(s")] (6)
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where (i) is for the robot 4, the set of all the other robots with which 1 is still in
communication. Obviously, in the worst case, this leads to a situation where the
robots act as if they were independent.

However, the computation complexity can be reduced in case of an application
of exploration. Indeed the estimation of the transition probability (eq. 5) can be
rewritten as:

P.(s'|sj, Atj) =n Z P.(s'|s")P.(s"|sj, At;) (7
s'"eS

To evaluate successively each probability from one state to another P,(s’|s”) until
the state s; is reached, a wavefront propagation algorithm can be applied from
the last known state s; of robot j. The obtained values can be consistent with
probabilities and represent the future intentions of a robot from its last known state.
Anyway this is at reduced efficiency if the communication breaks for a long time.

Computation Details

Algorithm 1: New DVF pseudo-code for agent 7

/*VI is Value Iteration algorithm */
/*WP is Wavefront Propagation algorithm */
begin

while exploration not finished do

//One decision step
Recover newly obtained exploration data
Recover and communicate its current state s;
Update MDP model MDP; =< S, A,T,R >
forall j € Q(:) do

| Receives s;
Vemp < VI (MDP;,~)
forall j + i do

| Pr(x]sj, Atj) <= WP (s;)
forall j # i do

Vi = Vemp
_ mazsR(s)
fij — maxsVj(s)

V; < DVF (MDPw fijv/% V}? P’l“)
Follow the policy associated with V;

end

The different steps to compute new DVF in case of exploration are summed up
in Algorithm 1 for one agent ¢. A decision step consists in updating data structures
of the MDP model from newly obtained data and computing the policy from DVE.



More details about the MDP model are given in [9]. The robots we consider are
homogeneous so the empathic value function V., is computed only once by robot
1 with the standard value iteration algorithm [1]. To evaluate the transition proba-
bility of other robot j, ¢ applies a wavefront propagation algorithm from the current
state s; of robot j. The weighting factor f;; allows to balance the value function
with respect to the rewards.

The agent plans continuously, updating its model and policy as it perceives
changes in its environment. This allows to update quickly action plan so as to react
as soon as possible to the decisions of the others and to information gained en
route*. However, this requires the decision step to be quick enough for on-line
use. Given that the model will be updated at each decision step, we use the greedy
approach that plans on short-term horizon.

Local coordination

New DVF compute strategies so as to minimize interactions but it does not handle
situations when the robots are close to each other that can happen for instance in
the starting zone® or in some narrow corridor. To solve local coordination, a Multi-
agent MDP (MMDP) [5] can be used as the robots concerned by the interaction
are close to each other. Joint policies are computed off-line for these specific joint
states and followed when local coordination is detected. In our context, these situ-
ations can be easily detected by computing the distance between the robot and its
partners. When it is inferior to a security threshold (local coordination necessary),
this results in different behavior according to the location one to another. In case
a robot follows another one closely or if they are face to face, one robot stops and
waits for the other to pass. When the robots diverge, none of the robots freeze;
when a robot is followed, it moves according to its policy. Additionnaly, an emer-
gency security threshold leads to a retro-traverse movement such that one robot
backtracks to let the other pass if they are too close. If the communication fails,
the robots act as if they were independant so there is no coordination. But when
they are within sensing range, collision avoidance via the anti-collision system is
applied as a low-level control instead of local coordination.. Such situations are
illustrated in our experiments.

Experimental Platforms

This section describes real and simulated robots.

*map is often explored before the robot reached its target.
5In our challenge, all the robots must start and return in a specified zone where close interactions
will necessarily take place.



Real Robots

Our Wifibot® ji-troopers are 6-wheels mobile robots that embed an Intel Core 2
Duo processor, 2GB RAM and 4GB flash. Each one is equipped with a laser range
scanner. The software running on-board is based on a Data Distribution System
(DDS) implementation from OpenSplice’. This middle-ware allows for several
programs to run concurrently, even on different computers. In our architecture,
various modules can run asynchronously: Laser acquisition, SLAM, Decision and
Mobility. Each robot is independent and has its own modules. The SLAM mod-
ule, based on [20], receives laser readings and provides the other modules with the
robot state. The architecture allows the robots to exchange their laser scans and
their states. While the communication does not fail, each robot knows the areas
explored by the others and updates its local map with local and distant scans. Dur-
ing a break in communication, nothing is exchange between the robots. However,
our architecture is robust to communication failures. As soon as a communication
between the robots has been re-established, the map is updated by explored areas
of the others and their relative states are again exchanged. The mobility module
implements an advanced point and shoot algorithm, along with a backtrack feature
preventing the robot from being stuck. The decision module runs asynchronously,
computing a new policy every second in average according to Algorithm 1.

Simulated Robots

We use the Stage® simulator with an architecture that mimics the real robots. DDS
is replaced by an Inter Process Communication shared memory segment. Laser
acquisition is simulated by a “laser” virtual sensor. A “position” virtual device
simulates both the SLAM module by providing odometric data and the mobility
module by executing the point and shoot algorithm. Finally the decision module
used on real robots can be used with the simulator without modification.

Experimental Results

In this part we show results from real robot scenarios and simulations where we
test various various communication schemes (permanent communication, no com-
munciation and communication breaks) to show the effectiveness of our new DVF
when communication is not reliable. These tests are more general than Pentagone
or ISR environments [11].
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(a) Laboratory experiments. (b) Challenge.

Figure 2: Resulting pixel maps of some areas explored with two robots. Pixels color
ranges from black (obstacle) to white (free).

Real Robots

We performed experiments with our two p-troopers. The videos, available athttp://lmatigno.perso. i
research, show the exploration of the robots. Some interesting situations are
underlined (global task repartition, local coordination, returning home). Resulting
maps of these explored areas are in Fig 2a. Fig. 2b is the resulting map of the chal-
lenge. Fig. 3a shows local maps as seen by each robot in which the distant robot is
seen by the local one in its local map. In this snapshot of one video, robots split the
space to explore different areas: robotl decides to explore the top of the map and
robot2 to explore a corridor. Fig. 3b depicts a local coordination situation success-
fully resolved: robotl decides to move while robot2 waits for the other to pass the
door. No breaks in communication occurred during these experiments. However,
we observed some temporary network errors during other tests and we noticed that
our approach resulted in an efficient exploration process. Once the connection had
been re-established, the robots coordinated with each other again as our architec-
ture is robust to communication failures.

Simulated Robots
Dense Simulated Environments

To show the benefit of our DVF extension in case of communication breaks, we
used two different simulated environments from Stage (Fig. 4). We chose to show
results with these complex environments because they are dense. Indeed, in such
environments, there are many possible situations of local interaction, and that is the
main difficulty to overcome. Local interactions are a good indicator of the quality

Swww.wifibot.com
http://www.opensplice.com
8http://playerstage.sourceforge.net/
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of our DVF policy. Using random environments, we would have sparse environ-
ments with fewer local interaction situations. The chosen complex environments
are most interesting as they show the interest of the DVF. In sparse environments,
the DVF would be as much performant but we would not have our local interactions
indicator.

Communication Schemes and Strategies

We test 4 cases using various communication schemes and different strategies :
no communication i.e. the robots are independent and compute strategies using
standard value iteration (eq. 1); permanent communication with DVF used by the
robots (eq. 2); and communication breaks. In this case, the robots use DVF when
communication is available and during the breaks, two methods are compared. First
they can be independent during the breaks and each individually explores the envi-
ronment. This is the method used in [6] and refered as eq. 6. Second the robots can
use new DVF (Algorithm 1). During each simulation, 5 breaks take place stochas-
tically, each lasts 25 seconds in office-likel environment and 40 seconds in office-
like2 environment.

Indicator of the Quality of DVF Policy

We plot for each case the time spent to finish the mission (explore the environment
and all robots returned to their starting position) and the cumulated mean time spent
by all agents in local interactions during one exploration. Indeed, the suboptimality
comes from local interaction situations. An optimal joint policy should minimize
local interactions, that’s why we use local interactions as a good indicator of the
quality of our policy. Local interactions are defined as a distance between two
robots inferior to 1 meter. During local interactions, local coordination is required
if it is possible i.e. if the robots communicate.

Results

Results are in Fig. 5. Independent agents (no communication) finished the mission
with the higher time since the robots individually explore and each robot covers all
the space. Permanent communication gives the fastest exploration and manages to
minimize local interactions as robots spread out efficiently. In case of communi-
cation breaks, new DVF drastically reduces local coordination compared with the
existing approach in the literature (independent agents during breaks) and the ex-
ploration time is slightly superior to the permanent communication case. It shows
that with new DVF, the agents will manage to coordinate themselves even if the
communication breaks. The local interactions indicator shows that our approach
avoids many local interaction situations which are particularly hazardous during a
break as local coordination is not available but only the anti-collision system.
Moreover, it is interesting to notice that local interactions are more or less im-
portant without communication according to the structure of the environment and
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especially to the situations of the agents when the communication breaks. Indeed
if a break occurs when the agents are distant, they will not come into close interac-
tions. In some environment as in Fig. 4b, local interactions are less frequent even
without communication given that the structure of the environment allows inde-
pendent agents to be seldom close together. However new DVF still reduces local
coordination compared with the other approach.

Conclusion

In this paper, we address the problem of multi-robot exploration under communi-
cation breaks constraints with an IO resolution of Dec-MDPs. We extend the DVF
methodology that assumes permanent and free communication and propose a new
DVF to support breaks in communication. We apply this method to multi-robot ex-
ploration scenarios, so that each robot computes locally a strategy that minimizes
the interactions between the robots and maximizes the space coverage. Experi-
mental results from real-world scenarios and our vice-champion rank at the robotic
challenge show that this method is able to effectively coordinate a team of robots
during exploration and is robust to communication breaks.
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(a) Global coordination.

(b) Local coordination.

Figure 3: Consistent local maps and video snapshots.
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(a) office-likel (b) office-like2

Figure 4: Simulation environments with starting positions.
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Figure 5: Results averaged over 5 simulations.



