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Abstract. In order to match shapes using their skeletons, these ones
should be thin, robust to noise, homotopic to the shape, consequently,
connected. However, these properties are difficult to obtain simultane-
ously when the shape is defined on a discrete grid. In this paper, we
propose a new skeletonization algorithm, which has all these properties.
Based on the Euclidean distance map, the algorithm extracts the centers
of maximal balls included in the shape and uses the ridges of distance
map to connect them. A post-processing is then applied to thin and
prune the resulting skeleton. The proposed method is compared to three
fairly recent methods to highlight the good properties of the obtained
skeleton.

1 Introduction

The skeleton is a relevant structure for shape matching. To compare the skeletons
of different shapes, the idea is to convert the skeletons into graphs, which will
be matched (branches being edges and, junction points and ending points being
vertices). However, in order to easily convert the skeleton into a graph, it should
have at least the following properties, which are not obviously obtained when
the shape is represented by points in Z2:

– connection: if the skeleton is not connected, the graph is not connected and
is not topologically equivalent to the shape;

– thinness (1-pixel width): a thick skeleton generates path extraction problems.

Moreover, in order to obtain effective and pertinent matchings in the context
of real objects, it is necessary to construct skeletons robust to noise. Notice that
this last property is rarely satisfied by the algorithms of the literature, for which
the slightest deformation of the border usually generates a branch.

Let us consider now such algorithms. In Z2, we can classify them as follows:

– skeletonization methods based on thinning [1,2]: In an intuitive manner, it
consists in ”peeling” the shape in order to obtain a set of connected points
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with a single pixel width, which preserves the topology of the shape. In
other words, thinning is an operation that aims to iteratively remove non-
terminal simple points. The main problem of these methods is the lack of
noise resistance.

– skeletonization methods based on a distance map [3,4,5,6,7]: The objective
is to identify the key points on the chosen distance map, where each pixel
is labeled with the value of its distance to the nearest background pixel.
The problem of these algorithms is to successfully extract enough points to
obtain a connected and thin skeleton.

As mentioned previously, object recognition requires a shape representation
which is resistant to minor changes, but the main drawback of the skeleton is,
generally, its sensitivity to noise on the shape boundary. This is the reason why
it is customary to use a regularization procedure, which can be of two types:

– smoothing the boundary of the shape: this is done before the computation
of the skeleton points, in order to remove unwanted boundary noise and
discretization artefacts [8]. The main drawback is that we do not control the
effects of smoothing on the general appearance of the skeleton.

– deleting unwanted branches: this is a post-processing step called pruning
[9,10]. It is based on local or global salience measures. The difficulty here is
to remove ”noisy branches” without removing any meaningful parts of the
skeleton.

The proposed algorithm, called DECS, computes the distance map, not only
to extract centers of maximal balls, but also to connect them. The obtained
skeleton is then connected and thin. Moreover, as the connection method is
based on a Laplacian of Gaussian (LoG) filter applied to the distance map, the
obtained skeleton is more robust to noise than thinning algorithms.

We describe in details the proposed method in Section 2. Then, three state-
of-the-art methods will be compared to ours in Section 3: the K3M method, the
extraction of the Euclidean skeleton based on a connectivity criterion, namely
Choiet al’s method and the Hamilton-Jacobi skeleton method.

2 Extraction of Digital Euclidean Connected Skeleton
(DECS)

2.1 Overview

Let us denote I ⊂ Z2 an image of size M×N and S ⊂ I a shape. More precisely,
we consider that S is 8-connected or 4-connected. We use this hypothesis to
ensure the connectivity of the skeleton. In case of non connected shapes, one
skeleton can be extracted per connected component. Furthermore, notice that
S can have holes or not. Let p be a pixel of S and N8(p) the set of 8-connected
neighbors of p.

Figure 1 summarizes the proposed method.
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Fig. 1. Flowchart of the DECS algorithm

The proposed method is based on the Squared Euclidean Distance Transfor-
mation, namely SEDT, computed using [11] ( cf Figure 3a). On the one hand,
the obtained Reduced Discrete Madial Axis map (RDMA map) contains the set
of centers of maximal balls (cf Subsection 2.2) [6] that are points belonging to
the skeleton, but might not be connected. On the other hand, we use a LoG filter
on the Euclidean distance map and compute a Ridgeness map (cf Subsection
2.3). Then, the main idea is to combine these two maps to obtain an ”over-
connected skeleton”. In other words, we connect maximal balls using ridge lines
of the distance map. Afterwards, we refine this ”over-connected skeleton” by a
post-processing, which consists in thinning it (cf Subsection 2.4) and keeping
only the main connected branches (pruning).

2.2 Reduced Discrete Medial Axis (RDMA) [6]

The Squared Euclidean Distance Transformation maps to each point p with
coordinates (i, j) in shape S the square of the radius of the largest ball centered
at p. The obtained map is called SEDTmap. As the skeleton contains centers
of maximal balls, the main idea is to recover such points using SEDTmap. A
maximal discrete ball is a discrete ball contained in the shape not entirely covered
by another discrete ball contained in the shape.

To obtain maximal discrete balls of a shape, we use Coeurjolly and Montan-
vert’s method [6], which is separable and linearly proportional to n, the num-
ber of pixels in S. The general idea is to represent discrete balls by elliptic
paraboloids (cf Figure 2a) to retain only those belonging to the upper envelope.
To illustrate this, if a sheet is placed on the set of paraboloids, hugging perfectly
curves, we retain only those in contact with the sheet. Centers of maximal balls
are the centers of paraboloids, which have been retained (cf Figure 2b).

Figure 3b shows an example of obtained RDMA. We can see that the RDMA is
not connected, which is its major drawback. In the following, we extract features
on the distance map that will be used to build a connected skeleton.

2.3 Extraction of Ridgeness Map

We can notice that the branches of the skeleton correspond to the ridges of the
distance map. The Laplacian operator applied to the Euclidean distance map
allows to extract them. However, the Laplacian is very sensitive to noise when
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(a) (b)
Fig. 2. a) (left): Maximal balls, (right): Representation of balls by elliptic paraboloids,
b) {A,B,C} is the representation in 2D of three balls that belong to the medial axis.
{A,C} represent maximal balls, but not {B} because {B} is covered by the union of
{A} and {C} [6].

computed alone on the distance map. Hence, we rather convolve the Euclidean
distance map with the negative Laplacian of a Gaussian (LoG) filter of standard
deviation σ.

rdg(x, y) = −(EDT ∗ LoG)(x, y)

An example is shown in figure 3c. We can see that only the main branches are
highlighted. As the obtained mask is separable, the complexity of the filtering
operation is in O(σn).

A simple thresholding of the ridgeness map is not sufficient to extract a con-
nected skeleton because the main branches that should be kept can be discon-
nected, as the values of the ridgeness map are not constant along branches. The
proposed idea is to combine the RDMA and the ridgeness map rdg to determine
the situation of the main branches - where there are enough maximal balls or
where the ridgeness map has sufficiently high values - and connect them using
the ridgeness map that acts as a guide.

2.4 DECS Algorithm

In this subsection we present the heart of our algorithm: this is the propagation
of maximal balls over ridges (Algorithm 1). This algorithm generates a labeling
H = {h(i, j)}i,j indicating whether a point is a center of maximal ball or a ridge.
Possible labels are {NONE, MAX BALL, STRONG RIDGE, RIDGE}.

MAX BALL− p such that p is the center of a maximal ball
STRONG RIDGE − p such that rdg(p) ≥ thridge−high

RIDGE − p such that rdg(p) ∈ [thridge−low; thridge−high[
NONE − p such that p /∈ {MAX BALL, STRONG RIDGE,RIDGE}

thridge−low is always equal to 0.05 and thridge−high varies between thridge−low

and 1.1. These values have been fixed by experimentation. The algorithm uses
a propagation technique starting from the center of the largest maximal ball,
which is a mandatory part of the skeleton. We consider this is a relevant starting
point, as it belongs to the main branch. The propagation algorithm keeps only
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the points that are connected by a path of ridge points (STRONG RIDGE or
RIDGE) or centers of maximal balls (MAX BALL). An example of result is
shown in figure 3d. At the end of this algorithm, the skeleton is the set of points
with a label different from NONE. It contains all important branches but has
one drawback. Indeed, the skeleton has a thickness that can be greater than one.

To obtain a thin skeleton, we used the MB2 thinning algorithm [12,13] that it-
eratively suppresses simple points according to their configuration. The result of
this algorithm is a skeleton, Sk, such that all the branches are one pixel thick con-
sidering 8-connectivity. In other words, we cannot suppress simple points without

(a) (b) (c)

(d) (e) (f)

Fig. 3. a) SEDT map b) RDMA, c) Ridgeness map resulting from the convolution
of the EDT with a negative LoG filter, d) Result obtained with the propagation over
ridges, which generates a thick skeleton, e) Result of the MB2 thinning algorithm and
f) Final skeleton of DECS method after pruning. The centers of maximal balls appear
in yellow, values of ridgeness map greater than or equal to thridge−high are visible in
red and values of ridgeness map between thridge−low and thridge−high in blue.
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changing the topology. An example of result is shown in figure 3e. At the end of
the current step, the skeleton is thin and connected but may have a high degree of
branching. The next step, which is optional, is used to remove spurious branches.

Algorithm 1. Pseudocode of propagation algorithm over ridges
1: Input: RDMA, rdg, thridge−high, thridge−low

2: Output: h : S −→ {NONE, MAX BALL, STRONG RIDGE, RIDGE}
3: Variables: p ,q , max SEDT: points ∈ Z2; st: a stack of points;

visited: a set of points
4:
5: for all p ∈ I do
6: h(p):=NONE
7: end for
8: visited:=∅
9: max SEDT:= argmax

p∈RDMA
SEDTmap(p)

10: add(st,max SEDT)
11: visited:=visited ∪ {max SEDT}
12: while notEmpty(st) do
13: p:=popTopElement(st)
14: for all q ∈ N8(p) such that q /∈ visited do
15: if q ∈ RDMA then
16: h(q):=MAX BALL; add(st,q)
17: else
18: if rdg(q)! thridge−high then
19: h(q):=STRONG RIDGE; add(st,q)
20: else
21: if thridge−low " rdg(q)< thridge−high then
22: h(q):=RIDGE; add(st,q)
23: end if
24: end if
25: end if
26: visited:=visited ∪ {q}
27: end for
28: end while

The pruning algorithm scans each end branch as long as the skeleton is not
stable (i.e. until there are no more branches to remove). A branch is removed if all
its points have a ridgeness less than thridge−highor if the percentage of maximal
balls in this branch is less than thperc−max−ball. Thresholds could be learnt on
a training dataset in a shape matching process. During this pruning step, each
skeleton point is visited once, so, the complexity is linearly proportional to | Sk |.

Finally, shape S has a skeleton made up of all the points of H that are labeled
MAX BALL, STRONG RIDGE or RIDGE. An example of result is shown
in Figure 3f. Throughout this section, we have seen that the total complexity of
the proposed method is linearly proportional to n. We can observe, in Figure 4,
two examples of skeleton obtained with the DECS method.
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(a) thperc−max−ball=0,5; thridge−high=1,1 (b) thperc−max−ball=0,35; thridge−high=1

Fig. 4. Examples of skeletons obtained with DECS method, thridge−low is always equal
to 0.05

3 Results and Comparisons

We chose to compare our method (DECS) against three existing methods, which
have equivalent complexities: K3M [2] is a recent thinning method, whereas
Choi et al’s method [3] and Hamilton-Jacobi Skeleton [5] are two methods based
on distance maps, like the proposed method. In this section, we test various
properties such as connectivity and noise tolerance. We also make a comparison
of their complexity. All tests were made on a database of shapes created by
Latecki and Lakamper [14] with 1071 shapes. For tests, the standard deviation
σ of LoG filter has been set to one. Because the one value allows to consider
sufficient neighboring while maintaining accuracy on the ridges.

3.1 Connectivity

K3M, Hamilton-Jacobi skeleton and DECS methods build a connected skeleton
in any situation. However, in Choi et al’s method, when the threshold becomes
high, connectivity is not guaranteed. Ideal pruning is expected to keep the overall
shape while removing unsignificant branches. With Choi et al’s method, when
pruning is performed, disconnections appear along the skeleton, which corrupts
information about the general shape. As regards this criterion, this last method
is not interesting because it does not keep the shape topology. Notice that this
criterion is dominant for us as our goal is to compute a graph based on the
skeleton. This disconnection is highlighted in Figure 5.
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Fig. 5. Highlighting of skeleton disconnection obtained with Choi et al’s method (ρ =
850)

3.2 Noise Tolerance

The advantage of using a method that needs thresholds is that the tolerance to
noise is adjustable. However, the problem is to make distinction, in real situation,
between important information related to the actual shape boundary, and the
noise. It’s for this reason we created theorical situations where we exactly knew
where the noise is.

To test the noise tolerance, we created manually 15 theoretical skeletons. Us-
ing either linear, sinusoidal or logarithmic functions, we generated the radius of
maximal ball along branches. Then, we reconstructed shapes using the value of
radius of maximal balls in order to obtain a “theoretical shape“. In Z2, noise
is added by randomly moving each contour pixel of k pixels along its normal
vector. For our tests, we used noise1 wherein k ∈ [−1; 1] and noise2 wherein
k ∈ [−2.5; 2.5]. For each method, we selected a reference skeleton. For this, we
varied thresholds and we retained the skeleton with the smallest Modified Haus-
dorff Distance (MHD), which allows to compute the Euclidean average error,
compared to the theoretical skeleton. Concerning skeletons obtained from noisy
shapes by noise1 and noise2 (cf Figure 6a), for each figure, for each method,
for each noise level, we varied thresholds and we have retained the result giv-
ing the smallest MHD associated. The result of this experiment is presented in
Figure 6b. This graph allows to bring out that the Hamilton Jacobi Skeleton
is not noise resistant compared to other methods. This is its main drawback.
Moreover, it allows to note that Choi et al’s method and DECS are very close in
spite of a slight advantage nearly imperceptible to the naked eye on images for
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(a) (b)

Fig. 6. a) Exemple of noisy shapes with skeleton associated, b) Comparison in terms
of resistance to noise

Choi et al’s method. Nevertheless, the major problem with Choi et al’s method
is the loss of connectivity of the skeleton when the threshold increases, i.e. when
unnecessary branches are not taken into account (which is a critical aspect for
us). Consequently, Choi et al’s method is not usable in our case. K3M was not
used in the comparison because this method does not use a threshold, therefore
it can not be adapted to be resistant to noise.

4 Conclusion and Future Work

In this paper, we presented a linear algorithm to extract a Discrete Euclidean
Connected Skeleton of a shape. To do this, we proposed a propagation algorithm
over ridges of the Euclidean distance map and centers of maximal balls, which
ensures connectivity. Then we obtained a thin skeleton through the MB2 thin-
ning algorithm, which ensures the thinness of the skeleton. The final step is to
reduce the skeleton by pruning branches, based on a criterion using simultane-
ously ridgeness values and the centers of maximal balls.

By construction, the proposed skeleton always has desirable properties like
full-connectivity, thinness and robustness to noise on the shape boundary in
order to be used for graph matching. In the literature, no skeleton had all these
properties as we mentioned in section 3. Observe that the proposed skeleton is
also computed in linear time.
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One should notice that the propagation algorithm used to generate a con-
nected skeleton is only usable on connected shapes. For multiple-component
shapes, this could be improved by detecting the connected components present
in the image and applying DECS on each related component. Our future work
is to create a graph from the obtained skeleton. Then, we will use this data
structure in order to make shape matching.
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