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a b s t r a c t

The skeleton is an essential shape descriptor providing a compact representation of a shape that can be
used in the context of real object recognition. However, due to the discretization, the required properties
to use it for graph matching (homotopy to the shape, consequently connectivity, thinness, robustness to
noise) may be difficult to obtain simultaneously. In this paper, we propose a new skeletonization algo-
rithm having all these properties, based on the Euclidean distance map. More precisely, the algorithm
cleverly combines the centers of maximal balls included in the shape and the ridges of the distance
map. Post-processing is then applied to thin and prune the resulting skeleton. We compare the proposed
method to three fairly recent methods and demonstrate its good properties.

! 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the recognition of 2D shapes, which could result
from an image segmentation step. To deal with this recognition
problem, one of the methods consists of extracting a set of features,
referred to as signature, on the shape to be recognized (to be clas-
sified) and on the shapes of the database, or on representative
shapes of the database, and comparing such signatures.

The goal here is to represent the shape with as little informa-
tion as possible while keeping the overall appearance of the
shape. In particular, the first properties that we expect for a
skeleton is to maintain the topological properties of the initial
shape and its geometric properties (ramifications and elongated
parts for example).

To compare skeletons extracted from shapes, the idea is to con-
vert skeletons into graphs (branches being edges and, junction

points and ending points being vertices) and then to perform graph
matching. In fact, a graph is a representation more compact than
the shape itself. Moreover, many effective graph matching meth-
ods have been proposed in the literature [1–3].

However, in order to easily convert the skeleton into a graph, it
is necessary for this skeleton to have at least the following proper-
ties, which are not obviously obtained when the shape is repre-
sented by points in Z2:

! it has to be connected: if the skeleton is not connected, the
graph obtained from this skeleton will not be connected.
Consequently, the graph and the shape will not have the same
topology;
! it has to be thin (1-pixel width): a thick skeleton generates path

extraction problems.

Moreover, to obtain effective and pertinent matchings in the
context of reals objects, it is necessary to construct skeletons
robust to noise. Note that this last property is rarely satisfied by
the algorithms of the literature, for which the slightest deforma-
tion of the border usually generates a branch [4].

Let us consider now skeletonization algorithms. We can classify
them as follows:
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! skeletonization methods based on thinning [5–9]
In an intuitive manner, it consists of ’’peeling’’ the shape for the
purpose of obtaining a set of connected points with a single
pixel width, which preserves the topology of the shape. In other
words, thinning is an operation that aims to remove
non-terminal simple points in a parallel or sequential manner.
The main advantage of these algorithms is the preservation of
the shape topology [5,6].
! skeletonization methods based on a distance map [10–15]

The objective is to identify the key points on the distance map,
where each pixel is labeled with the value of its distance to the
nearest background pixel. Different distance maps approximate
or compute exactly the Euclidean distance:
– Chamfer (approximation of the Euclidean distance by local

mask) [16];
– squared Euclidean distance [17];
– signed Euclidean distance [18];
– honeycomb (based on hexagonal grid) [19].

The next step is to search for the medial axis defined as the set of
centers of maximal balls contained in the shape. A maximal ball is
a ball contained in the shape not entirely covered by another ball
contained in the shape.
The extraction of the medial axis is a reversible operation if the
information on distance of each point to the nearest background
pixel is retained. Hence, the original shape can be obtained with
the medial axis [13]. The main advantage is that the skeleton is
centered and the reconstruction is possible. However, such algo-
rithms do not guarantee connectivity.

As stated previously, object recognition requires a shape repre-
sentation which is invariant to minor changes, but the main draw-
back of the skeleton is its sensitivity to noise on the shape
boundary. This is the reason why it is customary to use a regular-
ization procedure, which can be of two types:

! smoothing the boundary of the shape: this is done before the
computation of skeleton points, for the purpose of removing
unwanted boundary noise and discretization artefacts
[20,12]. In this case the result is rather biased as the boundary
smoothing changes the boundary location. Consequently, the
skeleton position will be different from the one computed
directly on the shape without smoothing. The difficulty here
is differentiating between significative boundary information
and noise.
! deleting unwanted branches: this is a post-process called prun-

ing [21–23]. It is based on local or global salience measures. The
difficulty here is removing ’’noisy branches’’ without removing
any meaningful parts of the skeleton.

Even if it could belong to the category of skeletons based on dis-
tance map, the proposed algorithm, called Digital Euclidean
Connected Skeleton (DECS), computes maximal balls but also
exploits the distance map in a novel way to connect centers of
maximal balls to each other. The main contribution is the propaga-
tion and fusion of centers of maximal balls taking into account the
ridges of the distance map, which are obtained by filtering this
map. The obtained skeleton is then connected, thin and robust to
noise. This is brought out by experiments in Section 4.1.

Before describing the proposed method in detail, in Section 3,
we detail in Section 2, three methods from the literature we con-
sider as state of the art for their properties: parallel thinning based
on critical kernels, namely Bertrand and Couprie’s method [5],
extraction of the Euclidean skeleton based on a connectivity crite-
rion, namely Choi’s method [10] and the Hamilton–Jacobi skeleton
method [12]. These methods will be compared to our method in
Section 4.

2. Methods used for comparison

We chose to compare our method (DECS) against three existing
methods: Bertrand and Couprie’s method is a recent parallel thin-
ning method, Choi et al.’s method and Hamilton–Jacobi Skeleton
are two methods based on distance maps, like the proposed
method.

2.1. Bertrand and Couprie’s method [5]

This is a recent parallel thinning method based on critical ker-
nels. The main idea is to gradually thin the shape until stability.
This algorithm is based on a general framework for the study of
parallel thinning in the context of abstract complexes. The princi-
pal is to parallely delete simple points, which are points that may
be deleted without changing the topology of the shape. This defini-
tion is based on the collapse operation which is a classical tool in
algebraic topology and which preserves the topology. It is based
on the fact that, if a subset Y of X contains the critical kernel of
X, then Y has the same topology as X. We can observe in Fig. 1,
an example of skeleton obtained with Bertrand and Couprie’s
method.

Note that although Bertrand and Couprie’s method has no
parameter to tune, like most thinning algorithms, but experiments,
in Section 4, will show its shortcomings in terms of resistance to
noise.

2.2. Choi et al.’s method: Euclidean skeleton based on a connectivity
criterion [10]

This method generates a connected Euclidean skeleton. This
algorithm starts with the computation of the 8-connected Signed
Sequential Euclidean Distance map (8SSED) [18].

The next step is the extraction of the skeleton based on a con-
nectivity criterion using a threshold q. The complexity of this algo-
rithm is linear with respect to the number of pixels in the image. As
illustrated in Fig. 2, the degree of branching of the skeleton
decreases as q increases. This raises the issue of finding the appro-
priate threshold value with respect to the desired application. This
method is interesting because it has been used for graph matching
[3]. Moreover, it is a skeletonization method based on a distance
map, like DECS.

2.3. Siddiqi et al.’s method: Hamilton–Jacobi Skeleton [12]

Like the previous method, Siddiqi et al.’s algorithm [12] gener-
ates a Euclidean skeleton with a single pixel width. Their method
relies on an initial continuous modeling of the Euclidean distance

Fig. 1. Skeleton of a letter obtained with Bertrand and Couprie’s method.
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to the input shape. It is based on the gradient of the Euclidean dis-
tance map. The obtained vector field is highly directed towards the
ridges of the map, as shown in Fig. 3. The ridgeness of a point is
related to the amount of vectors pointing towards this point.

This method shares some properties with the proposed method
given that it is based on distance map. It also uses a threshold
(thAOF). In Fig. 4, it can be seen that small branches disappear as
thAOF decreases.

3. Extraction of Digital Euclidean Connected Skeleton (DECS)

3.1. Overview

Let us now describe our proposed method in detail.
Let us denote I " Z2 an image of size M # N and F " I a shape.

(a) ρ = 4

(b) ρ = 50

(c) ρ = 800
Fig. 2. The skeletons obtained by Choi et al.’s method using different thresholds.

Fig. 3. Vector field generated by computing the gradient of the Euclidean distance
transform. Vectors are directed towards the ridges of the distance map. Points of
high inward flux are likely to be skeleton points (drawn in dashed red line).

(a) thAOF = −1

(b) thAOF = −3

(c) thAOF = −5
Fig. 4. The skeletons obtained by Hamilton–Jacobi skeleton method using different
thresholds.
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Definition 1. The 8-connected neighborhood (N8ðpÞ) of p with
coordinates ðxp; ypÞ is defined by:

N8ðpÞ ¼ qjmaxðj xp ' xq j; j yp ' yq jÞ ¼ 1
! "

Definition 2. A path is a sequence ðp0; . . . ;pu'1Þ of u pixels of Z2

such that for all i ¼ 0; . . . ðu' 2Þ;piþ1 belongs to N8ðpiÞ.

Definition 3. Let us denote F a set of pixels of Z2. F is a shape, if
and only if, for all pair of pixels p and q belonging to F , there exists
a path linking p and q included in F .

Thus, according to the definitions, our skeleton will be con-
nected. In case there are several shapes in I , one skeleton can be
extracted per shape. Furthermore, note that F can have holes or
not.

As an aid to understanding, Fig. 5 summarizes the proposed
method.

The first step consists in computing the squared Euclidean dis-
tance map. First, we find the centers of maximal balls and com-
pute the Reduced Discrete Medial Axis (RDMA) map. The
proposed method is based on the Squared Euclidean Distance
Transformation namely SEDT (cf. Section 3.2) computed using
[17]. The obtained map contains the set of centers of maximal
balls (cf. Section 3.3) [13] that are points belonging to the skele-
ton, but that might not be connected. Note that such a set is also
called medial axis. Then, we use a Laplacian of Gaussian filter
(LoG filter) on the Euclidean distance map and compute a
Ridgeness map (cf. Section 3.4). Next, the main idea is to combine
these two maps in order to obtain an ’’over-connected skeleton’’.
In other words, we connect maximal balls using ridge lines of the
distance map. Afterwards, we refine this ’’over-connected skele-
ton’’ by a post-processing, which consists of thinning it (cf.
Section 3.5) and retaining only the main connected branches
(pruning).

3.2. Squared Euclidean Distance Transformation (SEDT)

The Euclidean distance can be estimated thanks to the Chamfer
distance [24], or using local update [25]. The major problem with
these methods is that they do not produce an exact distance.
Take it out to obtain an exact distance, we chose to compute the
Squared Euclidean Distance (SED). The technique we used [13,17]
is based on a linear-time separable algorithm, which performs cal-
culations on rows then on columns. We specifically chose this
method because the SED of an image is calculated in two passes
only in linear time. The goal of SEDT is to compute for each point
ðxp; ypÞ of F , the following transform:

sedðxp; ypÞ ¼ minfðxp ' xÞ2 þ ðyp ' yÞ2; 0 6 x < M;0 6 y

< N and ðx; yÞ 2 !Fg

where !F is the complement of F .
An example is shown in Fig. 6. Note that the complexity of the

SEDT algorithm is linear in n, the number of image pixels.

3.3. Reduced Discrete Medial Axis (RDMA) [13]

At each point of F , the SEDT is the square of the radius of the
largest ball centered at p. As the skeleton contains centers of max-
imal balls, the main idea is to recover such points using the SEDT.
For this, it is necessary to have an inclusion test, which decides
whether a ball is covered by another one or not.

More formally, let us define the notion of maximal discrete ball.

Definition 4. Let d2 : Z2 # Z2'!N be a discrete squared Euclidean
distance.

A discrete ball, with center c 2 Z2 and a radius r 2 N related to
the distance d2 is defined by:

Bðc; rÞ ¼ fq 2 Z2jd2ðc;qÞ 6 r2g

A maximal discrete ball is a discrete ball contained in F not entirely
covered by another discrete ball contained in F .

The set of centers of maximal discrete balls of F is the Reduced
Discrete Medial Axis (RDMA). To obtain the RDMA of F , we used
Coeurjolly and Montanvert’s method [13], which is separable and
in OðnÞ, where n is the number of pixels in the image. Indeed,
RDMA is extracted in only four passes on the image. Moreover, this
method uses exact values without approximation.

Fig. 7 is used to highlight the fact that the RDMA is not con-
nected, which is its major drawback. In the following, we extract
features on the distance map that will be used to build a connected
skeleton.

3.4. Laplacian-of-Gaussian filtering

We can note that the branches of the skeleton correspond to the
ridges of the distance map. The Laplacian operator, which determi-
nes the local variations of second order, allows them to be
extracted. When applied to the Euclidean Distance Transform
(EDT), it is expected to be highly negative on positive ridges and
close to zero on linear slopes. We may thus consider the negative
Laplacian of the distance map as a measure of ridgeness.
However, the Laplacian is very sensitive to noise when computed
alone on the distance map. Hence, we rather convolve the
Euclidean distance map with the negative Laplacian of a
Gaussian (LoG) filter of standard deviation r ¼ 1.

RDGðx; yÞ ¼ 'ðEDT ) LoGÞðx; yÞ

Fig. 5. Flowchart of the DECS algorithm.

Fig. 6. Squared Euclidean Distance map of a holly leaf.
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with

LoGðx; yÞ ¼ ' 1
pr4 1' x2 þ y2

2r2

# $
exp ' x2 þ y2

2r2

# $

An example is shown in Fig. 8. We can see that relevant branches
are highlighted. The LoG filter is truncated beyond 3 times the stan-
dard deviation. As the obtained mask is separable, the complexity of
the filtering operation is linear in r.

However, a simple thresholding of LoG is insufficient for
extracting the skeleton as the main branches that need to be kept
can become disconnected, given that the values of the ridgeness
map are not constant along branches. The proposed idea is to com-
bine the RDMA and the ridgeness map RDG in order to determine
the location of the relevant branches (where there are enough
maximal balls and where the ridgeness map has sufficiently high
values) and connect them using the ridgeness map that serves as
a guide.

3.5. Combination of RDMA map and ridgeness map

In this subsection we present the combination of RDMA map
and ridgeness map, which allows the skeleton to be built with good
properties for graph matching. The summary of all the steps is
shown in Fig. 5.

Let us first give the pseudocode of the propagation algorithm
over ridges, which is the core of our proposal (Algorithm 1). This
algorithm generates a labeling h : F'!fNONE;MAX BALL;
STRONG RIDGE;RIDGEg, where MAX BALL is the label of the centers
of maximal balls, STRONG RIDGE is the label of the points having a
value in the ridgeness map greater than or equal to
thridge'high;RIDGE is the label of the points having a value in ridge-
ness map between thridge'low and thridge'high, and NONE are the points
not belonging to the main branches of the future skeleton.
Parameters used are explained in Section 4. The algorithm uses a
propagation technique starting from the center of the largest max-
imal ball. We consider this to be a relevant starting point, as it nec-
essarily belongs to the skeleton.

Algorithm 1. Pseudocode of propagation algorithm over ridges.

1: Input: RDMA, RDG, thridge'high; thridge'low.
2: Output:

h : F'!fNONE;MAX BALL; STRONG RIDGE;RIDGEg
3: Variables: p, q;max SEDT 2 Z2

4: st a stack of points
5: visited a set of points.
6: for all p 2 I do
7: hðpÞ :¼ NONE
8: end for
9: max SEDT :¼ argmax

p2RDMA
sedðpÞ

10: hðmax SEDTÞ :¼ MAX BALL
11: addðst;max SEDTÞ
12: visited :¼ fmax SEDTg
13: while notEmptyðstÞ do
14: p :¼ popTopElementðstÞ
15: for all q 2 N8ðpÞ such that q R visited do
16: if q 2 RDMA then
17: hðqÞ :¼ MAX BALL
18: addðst;qÞ;
19: else
20: if RDGðqÞP thridge'high then
21: hðqÞ :¼ STRONG RIDGE
22: addðst;qÞ;
23: else
24: if thridge'low 6 RDGðqÞ < thridge'high then
25: hðqÞ :¼ RIDGE
26: addðst;qÞ;
27: end if
28: end if
29: end if
30: visited :¼ visited [ fqg
31: end for
32: end while

The propagation algorithm keeps only the points that are con-
nected by a path of ridge points or centers of maximal balls. An
example of result is shown in Fig. 9.

To help in understanding this algorithm, we detail it step by
step. Rows 6–8 correspond to the initialization of all pixels with
NONE label. In rows 9–12, first, we label MAX BALL the center of
maximal ball which has the largest radius as this is necessarily a
skeleton point. Then, we add it to the stack in order to process
its neighbors. Finally, we add it to the set of visited pixels. In rows
13–32, we extract the next point of the stack. We label with

Fig. 8. Ridgeness map resulting from the convolution of the EDT with a negative LoG
filter.

Fig. 9. An example of result obtained with the propagation algorithm. The centers
of maximal balls appear in green, values of ridgeness map greater than or equal to
thridge'high are visible in blue and values of ridgeness map between thridge'low and
thridge'high in red. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 7. RDMA of a holly leaf.
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MAX BALL; STRONG RIDGE or RIDGE the non-visited neighbors of
the current pixel, if they correspond to the associated criteria.
Now, moreover, they belong to the set of visited pixels and they
are added to the stack. These operations are repeated until the
stack is empty.

At the end of this algorithm, the obtained temporary skeleton,
denoted by Scoarse, is the set of points with a label different from
NONE. It contains all important branches but has two drawbacks.
The first one is that rare false holes may appear in the skeleton
due to the thresholding and discretization of the ridgeness map.
These holes could make the skeleton non-homotopic to the shape.
An example is given in Fig. 10.

In order to solve this problem, if p belongs to F but does not
belong to Scoarse and which is surrounded by Scoarse then p is added
to Scoarse. In other words, unwanted holes are filled by labeling them
RIDGE. As a result of this step, shape homotopy is preserved. The
second drawback is that the skeleton has a thickness that can be
greater than one.

To thin the skeleton, we use the MB2 thinning algorithm
[26,27]. This parallel algorithm allows a curve to be obtained with
a thickness of one or two pixel(s) (regardless whether the thickness
of the corresponding branch on the shape is even or odd). To obtain
a curve with one-pixel thickness, post-processing is added. We
delete all simple points, which are not endpoints. An endpoint is
a point with only one neighbor in the skeleton. We chose this algo-
rithm because its complexity is linear in n. Moreover, it is equiva-
lent to a topology-preserving sequential thinning algorithm with
the same deletion rule [6].

The result of this algorithm is a thin skeleton, denoted by Sthin,
such that all the branches are one-pixel thick considering
8-connectivity. An example of result is shown in Fig. 11. At the
end of the current step, the skeleton is thin and connected but it
may have a high degree of branching. The next and last step, which
is optional, is used to remove spurious branches. In fact, some
branches are not necessary for graph matching and, on the con-
trary, they may disturb it.

We scan the shape and, as soon as one endpoint is detected, its
branch is scanned until an intersection is met, while the number of

points in the branch is stored and the number of maximal balls and
the location where the first point labeled STRONG RIDGE is met.
Once at the intersection, the algorithm must take the decision to
prune the branch or not. A branch is removed if all its points have
a ridgeness less than thridge'high and if the percentage of maximal
balls in this branch is less than a threshold thperc'max'ball. In this
algorithm, each skeleton point is visited once, which yields a linear
complexity.

Finally, the skeleton, denoted by S, is made up of all the points
labeled MAX BALL; STRONG RIDGE or RIDGE. An example of result is
shown in Fig. 12. We can observe, in Fig. A.1 in Appendix A, twelve
examples of skeletons obtained with the DECS method.

4. Results and comparisons

In this section, we test various properties such as connectivity,
reconstruction and noise tolerance. Moreover, we compare our
method according to such criteria with the three methods
described in Section 2. We also make a comparison of their com-
plexities. All tests are made on a database of shapes created by
Latecki and Lakamper [28] with approximately a thousand shapes.

4.1. Noise tolerance

To test the noise tolerance, we created 15 theoretical skeletons:
manually, we drew connected skeletons of one-pixel-thickness and
using either linear, sinusoidal or logarithmic functions, we
assigned a value representing the radius of maximal ball to each
pixel (we took care to generate curves where the radius of curva-
ture was high enough everywhere (no high concavities nor high
convexities)). Then, we reconstructed shapes using radii of maxi-
mal balls to obtain theoretical shapes. Noise was added by ran-
domly moving each pixel inward or outward along its normal
vector. We made sure that the thickness of the shape was high
enough so as not to break connectivity of the shape.

When all border pixels had been moved, we calculated an
8-connected curve from the list of moved pixels and then we recre-
ated a shape by coloring pixels inside this closed curve. For our
tests, we used noise1 with k ¼ 1 and noise2 with k ¼ 3, where k is
the offset. For each method, we selected a reference skeleton. For
this, we varied thresholds and we retained the skeleton with the
smallest Modified Hausdorff Distance (MHD) compared to the the-
oretical skeleton. For each noise, method and image we retained
the smallest MHD compared to the reference skeleton. Fig. 13 pro-
vides an example of noisy shape skeletonization for each method
with adapted thresholds (when these exist) giving the smallest
MHD. We can note that Bertrand and Couprie’s method is not resis-
tant to noise. This is the reason why we have not quantified the
noise tolerance for this method.

The results of this experiment are presented in Fig. 14. This
graph shows that the Hamilton–Jacobi Skeleton is not noise

Fig. 10. An example of rare unwanted holes.

Fig. 11. An example of result of the modified MB2 Thinning algorithm.

Fig. 12. An example of final skeleton of DECS method after pruning.
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resistant in contrast to the other methods. Moreover, it demon-
strates that Choi et al.’s method and DECS are very close in spite
of a slight advantage hardly imperceptible to the naked eye on

the images for Choi et al.’s method. Nevertheless, the major prob-
lem of Choi et al.’s method is the non-connectivity as explained in
Section 4.2. Choi et al.’s method is therefore not usable in our case.

4.2. Influence of parameters

In Section 4.1, we present ground truth tests. Each method is
tested in its best conditions: for each image, we chose threshold(s)
that yielded the best results according to our evaluation criteria
(defined in Section 4.1). For Choi et al.’s method, the amount of
spurious branches decreases as q increases. The threshold which
allows the best results to be obtained is q ¼ 803. For the
Hamilton–Jacobi skeleton method, the amount of spurious
branches decreases as threshold thAOF decreases. The best results
for this method are obtained with average threshold equal to
'3:06. As regards the proposed method, deletion of spurious
branches depends on the combination of two thresholds. These
two thresholds vary in the same direction, that is to say the higher
thperc'max'ball and thridge'high are, the fewer the spurious branches
there are.

thridge'low is always set to 0.05 and thridge'high varies between
thridge'low and 1.1. The typical thresholds for this method are
thperc'max'ball ¼ 0:4 and thridge'high ¼ 0:5. Nevertheless, Fig. 15 shows
four DECS skeletons of a same shape with different thresholds in
order to give an overview of the influence of the parameters.

4.3. Connectivity

Bertrand and Couprie’s, Hamilton–Jacobi skeleton methods and
DESC build a connected skeleton in any situation. However, in Choi
et al.’s method, when the threshold becomes high, connectivity is
not guaranteed. Some disconnections are highlighted in Fig. 16.
On the example, the skeleton is disconnected in the middle part
even if the threshold is relatively small. Disconnections also appear
when the thickness of the shape reduces and the shape forms a
‘‘second order shock’’ [15]. Consequently, the topology of the shape
is lost, which is a major drawback for shape matching.

(a) ρ =600

(b) thAOF=-4,4

(c)

(d) thperc−max−ball=0,5; thridge−high=0,7

Fig. 13. Result of noisy shape skeletonization for each method with adapted
thresholds (when there are) giving the smallest MHD, (a) Choi et al.’s method, (b)
Hamilton Jacobi method, (c) Bertrand and Couprie’s method and (d) DECS method.

Fig. 14. Comparison of resistance to noise. For i 2 ½1 . . . 15+, for t as
thAOF 2 ½'6 . . .' 0;1+ for Hamilton Jacobi Skeleton, for t as q 2 ½4 . . . 3000+ for Choi
et al.’s method and t is the combination of thperc'max'ball 2 ½0 . . . 1+ and
thridge'high 2 ½0;1 . . . 1;1+.
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As regards this criterion, this last method is uninteresting
because it does not keep the shape topology. Note that this crite-
rion is dominant for us as our goal is to compute a graph based
on the skeleton, which should be homotopic to the shape.

4.4. Complexity

In this subsection, let us recall that n is the number of pixels in
the image. The proposed method has a linear complexity. An
experimental study has been performed on all shapes of the
Latecki and Lakamper’s database and is shown in Fig. 17(a) to sup-
port our demonstration.

To prove this, we detail the complexity of each step. The com-
putation of the SEDT map is linear [13,17]. The computation of
the ridgeness map is also linear as it is a convolution of the
Euclidean distance map with LoG filter. So the complexity is
OðnrÞ. The extraction of centers of maximal balls is also linear as
it consists of four linear passes on the image [13]. As regards the
propagation algorithm, we select from the maximal ball with the
largest radius skeleton points by, at most, scanning all the pixels
of the shape. This step also has a linear complexity. The linearity
of thinning and pruning is not simple to prove by reasoning, but
it is shown experimentally through the graph in Fig. 17(b).

Choi et al.’s method has a linear complexity too. Moreover, we
can assimilate the complexity of Bertrand and Couprie’s method

(a) thperc−max−ball=0; thridge−high=0.1

(b) thperc−max−ball=0.2; thridge−high=0.7

(c) thperc−max−ball=0.35; thridge−high=1.1

(d) thperc−max−ball=0.5; thridge−high=0.8

Fig. 15. Examples of skeletons obtained with DECS method using different
thresholds. thridge'low is always equal to 0.05.

(a) ρ=9

(b) ρ=1100

(c) ρ=1200

Fig. 16. Evolution of threshold value in order to highlight a disconnection on Choi
et al.’s skeletons.
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to a linear complexity, even if the complexity is not explicitly given
in the paper [5], as it is a parallel thinning algorithm. However, the
Hamilton–Jacobi skeleton method has a complexity in O(n log n).
Regarding this criterion, this last method is less interesting.

4.5. Reconstruction

One of the important properties of a skeleton is the reconstruc-
tion ability. It shows how the geometry of the shape is preserved.
In fact, it guarantees that a method preserves the initial informa-
tion i.e. does not suppress nor generate pixels. The need for an
accurate reconstruction is questionable given that it depends on
the application. In the event of graph matching, we do not need
to reconstruct the shape exactly but we need to approximately
obtain the initial shape. The advantage of the proposed method
is that, depending on the fixed thresholds, we obtain various levels
of reconstruction. In fact, a branch of the skeleton is removed if it
does not contain any pixel with a value of ridgeness greater or
equal to thridge'high or if the percentage of maximal balls in this
branch is less than thperc'max'ball. Thus, the level of detail of the
skeleton increases as thperc'max'ball and thridge'high decrease. An exam-
ple of the skeleton and the generated difference image are shown
in Fig. 18.

It should be noted that, in order to perform reconstruction, the
value of the SEDT is kept for each skeleton point. Thus, we only
have to draw a ball with the corresponding radius, centered at each
skeleton point. We now introduce the three measures for assessing
reconstruction.

Let P be the set of pixels of the original shape and Q the set of
pixels of the reconstructed shape.

Definition 5. The percentage of non-reconstructed shape is
defined as:

Perc ¼ jP n Q j
jPj

# 100

Definition 6. Let us assume that P and Q are non empty subsets of
Z2. We define their Hausdorff distance HDðP;QÞ by:

HDðP;QÞ ¼ max max
p2P

min
q2Q

dðp;qÞ; max
q2Q

min
p2P

dðq;pÞ
% &

;

where d is the Euclidean distance and, p and q are elements of Z2. In
other words, the Hausdorff distance is the largest minimal distance
between a point of the shape and the result shape.

Definition 7. Let us assume that P and Q are non empty subsets of
Z2. We define their modified Hausdorff distance MHDðP;QÞ by:

MHDðP;QÞ ¼ max
1
jPj
X

p2P

min
q2Q
fdðp;qÞg; 1

jQ j
X

q2Q

min
p2P
fdðq;pÞg

( )
;

Fig. 17. By varying n, these graphs present the average of computation times of
skeletons for each image of the Latecki and Lakamper’s database. To vary n,
between two iterations, height and width are multiplied by

ffiffiffi
2
p

. Consequently, n
doubles at each iteration. a) Total calculation time, b) Pruning time (in red) and
thinning time (in blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 18. (a) An example of skeleton extracted from a leaf shape with DECS
algorithm, (b) the difference image obtained. In gray, the reconstructed image and
in black, the pixels that belong to the original image but not to the reconstructed
image.
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where d is the Euclidean distance and, p and q are elements of Z2. In
other words, the modified Hausdorff distance is the average dis-
tance between the original shape and the result shape.

In the remainder of this section, we compared the skeleton gen-
erated with DECS algorithm with the ones obtained from the meth-
ods of Section 2. In order for the comparisons to be as fair as
possible, the skeletons obtained with the three existing methods
were post-processed with [27] in order to have a one pixel thick-
ness. The results of this first test can be found in Table 1, where

the values correspond to the average of measures for the 1071
shapes contained in the database. For each of the four methods,
we selected the best reconstruction results by varying the
thresholds.

We can already note that perfect reconstruction was impossible
given that we had chosen to extract skeletons of one pixel thick-
ness. In fact, when the thickness of the shape is even, in order to
be able to reconstruct the original shape exactly, the skeleton
should have a thickness of 2 pixels to remain centered.
Otherwise, in an 600 # 400 image, this makes a difference of at
most 1 pixel on the reconstructed contour, which is imperceptible
during a quick visual inspection. As regards the best reconstruc-
tion, we can consider these four methods all comparable.

Figs. 19–21 show that changing thresholds affects the quality of
the reconstruction as well as the quantity of detail. These parame-
ters are responsible for the branching density of the skeleton.
Decreasing the degree of branching improves the usability of the
skeleton (in a matching process, for instance) but it decreases its
ability to accurately reconstruct the shape. The objective is to find

Fig. 19. Variation of Perc (a), HD (b) and MHD (c) measures according to the
thresholds thperc'max'ball and thridge'high of DECS.

Table 1
Quantification of the best reconstructions.

Perc HD MHD

Hamilton–Jacobi skeleton 0.58216 1.20559 1.04608
Choi et al. 0.37558 1.19915 0.95196
Bertrand and Couprie 0.37334 1.17093 1.02878
DECS 0.52732 1.19121 0.99731

Fig. 20. Variation of Perc, HD and MHD measures according to the threshold thAOF of
Hamilton–Jacobi skeleton method.

Fig. 21. Variation of Perc, HD and MHD measures according to the threshold q of
Choi et al.’s method.
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a trade-off between the accuracy of reconstruction due to
non-pruned skeleton and the usability of the skeleton in a subse-
quent processing. While a pruned skeleton may not perfectly
rebuild the shape, it is often preferable for the purpose of shape
matching. The first observation we can make is that the three mea-
sures vary in the same way depending on the variation of thresh-
olds. However, the quality of reconstruction of Choi et al.’s
skeleton deteriorates very quickly while the parameter of the
Hamilton–Jacobi skeleton method can be varied within a large
range of values until the results deteriorate.

4.6. Discussion

Let us recall that the skeleton criteria, which are the most crit-
ical for shape matching, are:

! Homotopy: the topology of the skeleton should match the
topology of the shape. Branches are one-pixel thick.
Discontinuities along the branches should be avoided.
! Low complexity: shape matching often involves analyzing

many shapes in a minimal time period. A linear complexity is
therefore highly desirable.
! Accurate reconstruction, i.e. have a skeleton that can rebuild the

shape sufficiently close to the original shape.
! Noise tolerance, which eliminates unnecessary branches so as

to avoid overloading the skeleton and to save time when
matching.

Regarding robustness to noise, we see a clear superiority of
distance-based algorithms. This superiority is not confirmed for
other criteria since the main drawbacks of the Hamilton–Jacobi
skeleton method are its complexity and especially its lack of noise
resistance. The major problem with Choi et al.’s method is the loss
of connectivity of the skeleton when the threshold increases, i.e.
when unnecessary branches are not taken into account (which is
a critical aspect for us).

5. Conclusion and future work

In this paper, we presented a linear algorithm for extracting a
Digital Euclidean Connected Skeleton of a shape. To do this, we
proposed a propagation algorithm over ridges of the Euclidean dis-
tance map and centers of maximal balls. The propagation starts
from the center of the maximal ball having the largest radius, thus
ensuring connectivity. Then we obtain a thin skeleton through an
extension of the MB2 thinning algorithm, which thus ensures the
thinness of the skeleton. The final step is to reduce the skeleton
by pruning branches, based on a criterion using simultaneously
ridgeness values and the centers of maximal balls.

The proposed skeleton has desirable properties like connectiv-
ity, thinness and robustness to noise on the shape boundary for
use in graph matching. As far as we are aware, no noise-robust
skeletonization algorithm while preserving connectivity and
homotopy to the shape has been previously reported in the litera-
ture. Observe that the proposed skeleton is also computed in linear
time and it allows the shape to be accurately reconstructed.

One should note that the propagation algorithm used to gener-
ate a connected skeleton is only usable on connected shapes. For
multiple-component shapes, this could be improved by detecting
the connected components present in the image and applying
DECS on each related component. Our future work will be to create
a graph from the obtained skeleton. Then, we will use this data
structure to make shape matching.

Appendix A. Examples of skeletons

Fig. A.1. Examples of skeletons obtained with DECS method using the same
thresholds: thperc'max'ball ¼ 0;4; thridge'high ¼ 0;5 and thridge'low ¼ 0:05.
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