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In the context of an automated leaf identification process, the use of thorough leaf margin descriptors is
essential given the importance of this criterion in the determination of the species. The spatial properties
of teeth along the leaf contour are something to keep track of, which is made possible through the use of
structured representations. This paper introduces a sequence representation of leaf margins where teeth
are viewed as symbols of a multivariate real valued alphabet. It presents the methods developed to make
use of this description for classification and implementation in a mobile tree identifying application. The
results of various classification methods are compared and discussed, both in terms of species recognition
and of consistency with botanical concepts.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction After a review of existing approaches for shape representation
The determination of plant species from field observation
requires a necessary amount of botanical expertise, which puts it
beyond the reach of most nature enthusiasts. The conception of a
mobile identification application is a way to transmit botanical
knowledge, through an explanatory leaf identification process,
focusing on the discriminant shape criteria listed (with the associ-
ated obscure vocabulary) in flora. Such a process relies on a descrip-
tion of shapes that makes a semantic interpretation possible.

The use of curvature-based contour description is a very effi-
cient tool for shape recognition. In the special case of tree leaves,
the shape of the leaf margin is a common and highly discriminant
criterion for the identification of species. Those margins show
structures easily representable by curvature, but with various spa-
tial properties of distribution or frequency, a dimension that most
contour features would overlook. The method we propose is dedi-
cated to keeping track of this spatial information by the introduc-
tion of a sequence-like structured representation, light enough to
build species models that are embeddable in a smartphone
application.
in Section 2, we present in Section 3 the methods we use to build
the proposed representation and to manipulate it. Section 4
expounds the classification system based on our contour descrip-
tion, and the results and comparisons in terms of species identifi-
cation and shape recognition are detailed in Section 5.
2. Related work

2.1. Contour description

A very rich representation of a contour is the Curvature-Scale
Space (CSS) [20,19], obtained by piling up measures of curvature
on a contour over increasing smoothing scales. It has been used
for shape retrieval and even for leaf classification [18,3]. In this
context, only the zero-crossings of the curvature (the CSS contours)
are considered for description, leaving aside the actual values of
the curvature. Locating teeth on the leaf margin is very close to
detecting dominant points on a close curve, a well-studied prob-
lem [24] for which the use of the curvature-scale space proves to
be of great interest [21].

Curvature constitutes anyway a very informative source of
information on contour shapes, but it is often used for building
aggregative features (HoCS [14], number of teeth [10,1], and
average properties [10]) that completely overlook the spatial
repartition of structures on the contour, like many other geometri-
cal contour descriptors used for leaves (Angle Code Histogram

http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.07.016&domain=pdf
http://dx.doi.org/10.1016/j.patrec.2014.07.016
mailto:guillaume.cerutti@liris.cnrs.fr
http://dx.doi.org/10.1016/j.patrec.2014.07.016
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


178 G. Cerutti et al. / Pattern Recognition Letters 49 (2014) 177–184
[27,28], Directional Fragment Histogram [9]). On the other hand,
approaches keeping track of the spatiality do not provide a full
description of the properties of the structures [18] and rely on a
computationally expensive matching process [2,3].

Another contrasting approach consists in retaining all the con-
tour information through the use of simple generic descriptions
such as the Centroid-Contour Distance curve (CCD) [26], where
shapes are straightforwardly converted into sequences that can
be aligned for comparison [12]. Such direct representations of a
contour, though being perfectly faithful to the shape they describe,
do not select in their definition the a priori relevant information
concerning the considered objects.

2.2. Sequence representations

Among structured representations, sequences, initially strings
of characters, have the simplest structure and are hence the easiest
to process. They can be compared through the computation of
edit distances, based on the Levenshtein distance [15], efficiently
determined along with optimal edition paths through dynamic
programming [25], distances that can be normalized [17,16] for
more genericity.

Real-valued sequences are more common in time series, and
tools for comparison and alignment borrow concepts from string
edit distances. The most usual is the Dynamic Time Warping dis-
tance [22], that can be modified to satisfy triangle inequality [6],
or used outside of a temporal context, for shape indexing for
instance [12].

Concerning sets of sequences, many approaches try to find
groups and patterns in string data, through clustering [23] or
Self-Organizing Maps [13]. There also exist methods to estimate
the distribution of sequences in a set, finding the set median (the
element of the set minimizing the sum of edit distances to all
the other strings in the set), estimating the generalized median
[7], or even the deviation of the set [11].
Fig. 1. Leaf contours obtained on rotated images, with located base area ( ) and
apex area ( ), and detected teeth ( ) and pits ( )).
3. Sequences for leaf margins

The objects we study are segmented leaves, in other words bin-
ary images describing a contour whose properties we want to
characterize. In addition to this input, we also have a polygonal
model at hand, representing the global shape of the leaf, that we
use for prior segmentation [5]. In particular, it provides a way of
knowing in advance the main symmetry axis of the leaf, which is
a very useful source of information for interpreting the contour.

3.1. Leaf contour understanding

The idea beneath the definition of a margin shape descriptor is
that it should make use of prior knowledge on what is discriminant
in the context of species determination, a knowledge that derives
from botany. Using this knowledge implies considering the object
as a leaf, and producing a high-level interpretation of its shape
enables the consideration of more specific descriptions, which
would not be possible without any grasp of what kind of shape is
being processed.

Botany tells us that the dentition of the leaves is something that
defines the species. In other terms, the size, sharpness, orientation,
frequency and regularity of teeth along the margin, as a human eye
would qualify them, constitute a discriminant feature providing
clues for identification, independently of the other shapes of the
leaf.

Consequently, to simulate this characterization, we explicitly
detect every tooth and pit on the leaf contour, leaving apart
the base and apex areas that cannot be seen as actual teeth. The
extraction of these dominant points is based on an analysis of
the CSS transform of the contour described in [4]. The result is a
visually interpretable representation of the contour where the
basal and apical points are precisely defined, and where the teeth
are located described by their properties in terms of size (scale)
and sharpness (curvature).

One major advantage of landmarking the leaf contour in such a
way is to implicitly provide some robustness to rotation. Once the
base and apex are located, they can be used as reference points and
any following processing will be done in this framework, skipping
the otherwise compulsory aligning phase. Fig. 1 shows the stability
of the contour interpretation to small rotations, guaranteed by the
use of rotation independent information such as curvature in the
positioning of well-defined leaf landmarks. Contour interpretation
would also benefit any other non-aggregative descriptor (CCD,
shape context) where providing a rotationwise stable origin point
would potentially simplify the matching procedure.

The extraction and characterization of tooth points along the
contour provides a condensed look on the discriminant informa-
tion of a leaf margin. It allows the building of a simple and light
representation that will make comparisons easier than with the
complete contour signal, while focusing on elements on interest.
It makes it possible to look at a higher level and build contour
models of the species at a small computation and memory cost.

In our case, given a contour parametrized by its normalized arc-
length u, what we obtain is a set D ¼ uif gi¼1...jDj of dominant points,
described through a CSS analysis by curvature j and scale s. We
also use the axis formed by the located base and apex points A
and B to compute a vertical position p as the relative position of
a point’s projection on the segment ½BA� (0 corresponding to B
and 1 to A). The resulting object is the set P ¼ Pi ¼ uH

i ðui;
��

uB;uAÞ;ji; si;piÞ;ui 2 Dg.
To describe the margin, we separate the points in P into two sets

PL and PR, one for each side of the leaf. Then, knowing the positions
uB and uA of the base and apex points, it is possible to compute a
relative arclength uH for the two sides so that the two sets of points
are on comparable scales. This results in the building of two paral-
lel series of points as shown in Fig. 2 (a), where teeth and pits, with
their characterization, spread from the base to the apex, with the
same reference measure uH.

These series can be seen as sequences, illustrated by Fig. 2 (b),
where the symbols are not letters of a discrete alphabet as in strings,
but rather vectors ðj; s;pÞdescribing teeth in a 3-dimensional space.
Defined this way, margin sequences become objects that represent
accurately the profile of the contour, including strong spatiality
information.

3.2. Manipulating margin sequences

In order to process such objects in a recognition framework, we
want to be able to perform basic operations such as comparisons
and averaging, which are necessary steps to consider margin



Fig. 2. Series of points obtained on both sides of a leaf margin (a) and their
representations as sequences (b) with size, curvature (positive curvature and
negative curvature ) and vertical position (base apex).
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strings at the same level as other vectorial descriptors. Among
structural representations, sequences are the most simply defined
and the easiest to manipulate, using common tools derived from
string processing.

The first tool we use to process margin sequences is the edit dis-
tance, defined as a normalized weighted Levensthein distance
adapted to the case of a vectorial alphabet, close to the edit distance
with real penalty [6]. Considering two sequences P1 ¼ ðP1;iÞi¼1...jP1j
and P2 ¼ ðP2;jÞj¼1...jP2j we define the three elementary operation costs
necessary to the computation of the optimal edition path, the inser-
tion and deletion costs depending on the size of the element (we
denote as k the null element and empty string), and the substitution
on a weighted distance between the two vectors:
cðP1;i ! kÞ ¼ s1;i
� �1

2; cðk! P2;jÞ ¼ s2;j
� �1

2;

cðP1;i ! P2;jÞ ¼
X

x2j;s;p
xxðx1;i � x2;jÞ2

 !1
2

ð1Þ

The edit distance dHðP1; P2Þ is then simply the cost of the opti-
mal edition path OHðP1; P2Þ, obtained through dynamic program-
ming. To ensure that we obtain comparable distances, we
adapted an existing method to normalize this distance [16] in
order to keep it between 0 and 1 and achieve a greater genericity
with regard to the length of the compared sequences. The final dis-
tance term we use is based on the maximal distance between two
sequences (as the cost of the path obtained by deleting one
sequence and inserting the other) and can then be written as:
deditðP1; P2Þ ¼
2� dHðP1; P2Þ

dHðP1; P2Þ þ dmaxðP1; P2Þ
; dmaxðP1; P2Þ

¼
XjP1j

i¼1

cðP1;i ! kÞ þ
XjP2j

j¼1

cðk! P2;jÞ ð2Þ

To make leaf margin sequences convenient objects, we also need
to be able to average some of them. One first step towards averaging
is to compute a median of two margin sequences P1 and P2, for
instance to end up with one sequence per leaf, a way to produce
one convenient description as shown in Fig. 4. To do so, we simply
compute the optimal edition path Of ðP1; P2Þ and consider only sub-
stitution operations. The average sequence medðP1; P2Þwill then be
the sequence of the middle points of the substituted vectors:
medðP1; P2Þ ¼
P1;i þ P2;j

2

� �
ðP1;i!P2;jÞ2OHðP1 ;P2Þ

ð3Þ

For a larger set of sequences S ¼ Psf gs¼1...M a way to derive a rep-
resentative object is to estimate its generalized median medðSÞ. It
is defined as the sequence of the space X, formed by any vectors,
that minimizes the sum of edit distances to all the elements of
the set:

medðSÞ ¼ argmin
P2X

X
Ps2S

deditðP; PsÞ
 !

ð4Þ

The generalized median estimation algorithm we use is derived
from the heuristic introduced in [7] for strings, and considers as a
starting point the set median medSðSÞ, the element of the set min-
imizing the same sum of distances:

Pmed  medSðSÞ ¼ argmin
P12S

X
P22S

deditðP1; P2Þ
 !

ð5Þ

The idea is then to iteratively update the current sequence to
get closer to the generalized median. This is done by computing
the edition paths of the current estimated median to every
sequence in the set, and selecting at each position of Pmed the most
frequent operation. The modifications that occur most often indi-
cate the direction to follow to reduce the sum of edit distances,
as the subsequent suppression of the operations from the edition
paths will reduce their costs.

Contrary to strings where possible operations, as the alphabet,
form a discrete set, we can not expect to encounter the exact same
operation more than once with real valued vectors. However, to
decide which operation is the most represented, we need a way
to group operations. Consequently, for each position of the current
estimated median, we chose to count operations along five types:

� Deletion of the symbol Pmed;i:
DS;i ¼ ðPmed;i ! kÞ 2 OH

s ; s ¼ 1 . . . M
n o
� Substitution of Pmed;i by a symbol of same curvature:
SþS;i ¼ ðPmed;i ! Ps;jÞ 2 OH

s ; s ¼ 1 . . . Mjjmed;i � js;j > 0
n o
� Substitution of Pmed;i by a symbol of opposite curvature:
S�S;i ¼ ðPmed;i ! Ps;jÞ 2 OH

s ; s ¼ 1 . . . Mjjmed;i � js;j < 0
n o
� Insertion of a symbol of same curvature after Pmed;i:
IþS;i ¼ ðk! Ps;jÞ 2OH

s ;s¼1 . . .MjðPmed;i! Ps;j�1Þ 2OH

s ^jmed;i�js;j > 0
n o
� Insertion of a symbol of opposite curvature after Pmed;i:
I�S;i ¼ ðk! Ps;jÞ 2OH

s ;s¼1 . . .MjðPmed;i! Ps;j�1Þ 2OH

s ^jmed;i�js;j < 0
n o
Among the three first sets for the position i, only the one with
most votes is selected, as it will determine the fate of the vector
Pmed;i. Insertions, on the other hand, may occur in addition to the
transformation of Pmed;i, and they should be taken into account
whenever they occur in more that half of the cases (i.e. if jIþS;ij > M

2
for instance). The retained operations at each position (deletion/
substitution and potential insertions) define an average edition
path OS that is built by lines up the selected operations, but with
their average symbol as second operand. For instance if substitu-
tion is kept at position i, the average edition path will contain
the operation:

OS;i  Pmed;i !
1
jSþS;ij

X
ðPmed;i!Ps;jÞ2SþS;i

Ps;j

0
@

1
A

This path OS formed by the sequence of these average opera-
tions is then applied to the current median estimation to obtain



Fig. 3. One step of the generalized median estimation algorithm: set of sequences
(a) and computation of the set median (marked in green), edition paths of the
current estimated median to the sequences of the set (b), average edition path
obtained from these paths (c), and re-estimated median (d). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Averaging two margin sequences and matching points to create a single leaf
margin descriptor.
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a new Pmed. If changes have been made, this whole process is
repeated, until the estimated edition path to apply to Pmed is simply
ðPmed;i ! Pmed;iÞ
� �

i¼1...Nmed
and no further transformation can be

found. The final sequence PH

med corresponds then to the estimated
generalized median of the sequence set medðSÞ.

The Fig. 3 illustrates a first iteration of this process. Among the 4
sequences of the set, the set median is selected (a) as a first estima-
tion of the median. The operation paths transforming this sequence
into all the sequences of the set are then computed (b). By counting
the operations at each position, we build an average path (c). For
instance in the first position, there are 3 substitutions and 1
deletion, and it is the substitution (by the average symbol of the
3) that will be selected. This path is finally applied to the current
estimated median to produce its new estimation (d) on which
the process will be repeated.

Intuitively, the successive selection of the most common trans-
formations used to reach the sequences of the set ensures that the
overall edit distance is reduced (the operations at the next step will
necessarily be less costly for most sequences of S) and the estima-
tion process converges towards a good estimation of the general-
ized median of the set S. This notion of approximate median
sequence proves very handy, since it condenses a set of sequences
into one unique representative, which makes comparisons easier
to carry out. We dispose now of tools to compare and establish
similarities between margin sequences, and to build models after
a certain number of them, a way to perform generalization from
individual data.
4. Margin sequence classification

4.1. Sequences for description

The main application of the string processing tools will be to
use the leaf margin sequences as convenient descriptors for the
identification of tree species. The first step is to sum up the infor-
mation extracted on a leaf margin into one single descriptor, which
we perform by computing the estimated median of the two
sequences PL and PR representing the left and right margin:
PH ¼medðPL; PRÞ

What is actually performed by this averaging process based on
substitution operations is a 1-to-1 matching of the teeth and pits
detected on each side, so that only the structures that can be asso-
ciated with a similar structure on the other side are kept in the
description. This alignment process, as well as the averaging of
symbols in the median sequence, is a way to smooth the imperfec-
tions in the segmentation. An example of such matching is given in
Fig. 4.

This unique margin descriptor constitutes first a visually expli-
cit synthesis of the teeth and pits encountered on the margin of the
leaf, independently of the other shape criteria of the leaf. It is
already interpretable at a high level, while being a processing-
ready object, through the tools introduced earlier. It allows also
an almost direct conversion into a curve, if we translate the points
into convex and concave parts, and might then be used as an inter-
esting visualization tool for an automatic reconstruction of the
analyzed shape.

4.2. Species identification

The primary use of margin sequences is to perform species rec-
ognition. Considering leaf identification as a supervised classifica-
tion problem, the goal is to use a labeled training database S to
classify new examples into classes formed by species Eef ge¼1...N .
Considering margin sequences, the base will be constituted of
sequences associated with a class index � : S ¼ Pn; E�ðnÞ

� �� �
. For

each species identified by the index e, we can isolate a subset of
sequences Se ¼ Pnj�ðnÞ ¼ ef g.

Among the possible choices to associate an example with a
label, the simplest is a nearest neighbour (NN) classification that
requires matching an example with all the sequences in S. The
decision is then made by assigning the class of the closest example
(1NN), or the most represented among the k best matches (kNN).
These approaches can be generalized to produce a ranking of spe-
cies from the order of the matches. This is a basic yet effective
option, but it requires a great deal of computation, growing with
the size of the database, especially given the quadratic complexity
of the edit distance.

To avoid that much computation on objects that are less easily
processed than vectorial data, a solution to limit the number of
necessary comparisons would be to keep only one model per spe-
cies. The most obvious approach is then to consider as the best can-
didate to represent the species Ee the estimated median sequence
computed on the set Se. That is the solution we chose, since its
lightness in computation time is definitely appealing, as well as
its ability to synthesize a large amount of information into one
model, that is still interpretable at a high level:

Pe ¼med Seð Þ ¼med Pnj�ðnÞ ¼ ef gð Þ

The species models we obtain through this computation are
sequences of symbols which are much more regular and synoptic
than the sequences obtained on one given leaf, as show the
sequences provided on the Fig. 5. The estimation of the median
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sequence provides then a very interesting generalization, at least
from a visual point of view, as what appears is a visibly faithful
summary of the properties of the leaf margin for a species, a canon-
ical margin that gives a good idea of the shape generally presented
by a species.

Given a new example, the ranking of classes is then simply per-
formed by comparing the example P with the models accounting
for each and every species, i.e. by computing for all the species Ee

the edit distances deditðP; PeÞ. The species will then simply be
ordered by ascending order of the distances. In the case when
the distances are equal, we assume the species to be ex-quo; this
is justified by the fact that the margin alone is not enough to iden-
tify a species, and the margin sequences are destined to be com-
bined with vectorial descriptors accounting for the global shape
of the leaf, and its basal and apical shapes [5].

One may argue that a simple canonical model is not enough to
cover the diversity of shapes taken by a species, and there is actu-
ally a risk that some individuals of a species will lie quite far from
this ideal representative. Capturing variability is difficult for struc-
tural approaches, and even if there are ways to characterize the
distribution of individuals in a set of sequences [11], taking it into
account to perform better comparisons is a complex issue. Here
lies probably the most significant limit of structural methods.

To overcome this difficulty, one solution is to go back more or
less implicitly in a vectorial space, where classes can be more easily
modeled, and where usual classification algorithms can be applied.
This is what is made possible by sequence kernels. A kernel is a
semi-definite positive function that associates a pair of elements
to a scalar value that can be expressed as an inner product. By its
definition, the distance deditð�; �Þ constitutes a kernel on the domain
of margin sequences, and its value for every pair of sequences
deditðPn; Pn0 Þ can be known. Based on these values it is possible to
use classification algorithms using only inner-product-like terms,
such as SVM, without the need of making explicit the vectorial for-
mulation from which ensues the inner product. Sequence kernels
are a way of grasping the distribution of structured elements in a
set through their relationships to one another, that might be very
useful in the context of species identification.
5. Results & discussion

To validate our structured approach and measure its relevance,
we performed large scale tests over a subset of the Pl@ntLeaves
2012 database [8] comprising the Scan and Pseudo-scan images
of the 88 simple-leaved Angiosperm species out of the 126 of the
database. It consists of 5340 plain background images (in order
to limit the influence of the segmentation method on the results)
Fig. 5. Species estimated median margin sequences for two tree species, computed
on the Pl@ntLeaves 2012 database [8].
forming 88 unevenly distributed classes, some species being much
more represented than others. The tests included comparing our
leaf description to existing shape descriptors to establish its
competitiveness.
5.1. Compared methods

We wanted to locate the performance of our method describing
leaf margins by sequences among state-of-the-art descriptors.
However, it is complicated to find descriptors measuring the same
information as we do, i.e. only the margin information decorrelated
from the global shape of the leaf and from other local shapes.
Consequently we tried to include contour-based descriptors that
are comparable to ours but with a generally less limited scope,
and compared them with both our margin description and adding
the full leaf description [5]. The implemented methods were the
following:

� Basic curvature measures [CURV]: simply average and standard
deviation values of the curvature computed over a contour at 4
different scales; this is assumed to be the rawest measure of the
contour information.
� Curvature-scale parameters [CSSP] [4]: our previous method,

parameters describing the teeth and pits on the margin, com-
puted from the points detected on the contour using the CSS,
and characterizing the size, sharpness and distribution of teeth
on the margin.
� Histograms of curvature over scale [HoCS] [14]: state-of-the-art

contour description, built from the CSS by creating histograms
of curvature values (21 bins) over different scales (25 values);
an aggregative yet quite complete description of what is present
on a contour.
� Inner-Distance Shape Contexts [IDSC] [2]: heavy shape descrip-

tion computed by sampling the contour (20 sample points) and
building at all sample points log-radial histograms of the other
points viewed by paths remaining inside the shape; an exten-
sive and expensive shape representation.
� Contour bags of visual words [CBoW]: computed using SURF

keypoints and descriptors extracted on the binary segmented
images; visual vocabulary of size 1000 learned by clustering,
each image then being represented by a fixed-size histogram
of its words from the vocabulary.

To these approaches we add the two methods we propose,
based on the structured representation designed to explicitly cap-
ture the specificities of leaf margins:

� Leaf margin sequences [LMS]: the proposed descriptor here
considered alone to represent the leaf; obviously this is not suf-
ficient as margin is not fully representative of the species, but it
may be interesting to see where it is located among the other
methods.
� Full leaf description [Folia]: the proposed descriptor for leaf

margins, to which we add vectors describing the global shape,
basal shape and apical shape of the leaf [5] to take all these
decorrelated aspects in the process of identification; this is
the method used in the iPhone application Folia.1

5.2. Classification results

Most of the selected methods were designed for matching indi-
viduals rather that training a classifier, which is why we decided to
measure the performances of both of those rather incompatible
1 https://itunes.apple.com/app/folia/id547650203.

http://https://itunes.apple.com/app/folia/id547650203


Fig. 6. Classification results for the contour descriptors: [CURV] (Gaussian),
[CSSP] (Gaussian), [LMS] (Median), [LMS] (K-SVM) and [LMS] (Matching).

Fig. 7. Classification results for the contour descriptors on non-entire species:
[CURV] (Gaussian), [CSSP] (Gaussian), [CSSP] (Matching), [LMS] (Median),

[LMS] (K-SVM) and [LMS] (Matching).
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approaches. To keep things simple and comparable, we adopted
the same classification approaches in all the cases. For matching,
we performed a nearest neighbour classification, whereby the
species are ranked as the appear in the ranking of individuals, with
the specificity that when two species share the same distance or
similarity measure, they are assigned the same rank.

For classification, we first used a naive classification algorithm.
We considered all data as vectorial and built Gaussian models to
represent the classes, excepted for margin sequences where classes
are represented by only estimated median sequences. In this sim-
ple model case, we separate histogram-like data for which it is
actually just an average, and distances are computed as euclidean
distances that gave the best results among other possibilities (chi-
square, intersection). When the data was initially under the form of
vectors, we used a so-called ellipsoid surface distance [5], designed
to take variability into account. For descriptors needing alignment
before comparison ([IDSC] notably), the best alignment was
selected when building the class models.

We also used the edit distances between margin sequences as a
kernel to train a multi-class SVM ([LMS] (K-SVM)) and provide a
way to take better account of the variability of the classes. The
classifier actually consists of a set of 1vs1 SVMs making a decision
for any pair of classes, and the final classification is based on a
number of such binary votes received by each class.

To measure performance, we split the dataset into a training set
containing 2/3 of images, and a validation set containing the
remaining 1/3. Only the first set is used for matching and for the
training of the classifiers, and the recognition performance is mea-
sured on the second one. Rather than one raw good classification
rate, we compute cumulative rank histograms, corresponding to
the rates of examples for which the correct species is among the
n first answers, n ranging from 1 to 10.

The first comparison provided in Fig. 6 concerns only the
margin descriptors introduced by us, and demonstrates beyond
possible doubt that the spatial representation [LMS] carries much
more information than the summarized description of teeth prop-
erties [CSSP] and obviously than the very basic curvature measures
[CURV]. It appears that a significant proportion of information is
lost in the averaging process and by the fact that it overlooks var-
iability, as it is shown by the performance of the nearest neighbour
matching. Still, there is a factor of 50 between the computation
time of both approaches, which is enough, along with the overall
good performance to justify choosing the lighter path.
These results are somewhat biased by an aspect of the method
we use. With [LMS], as well as with [CSSP], absolutely all of the
leaf margins for which no teeth were detected are sent on the same
point of the descriptor space (an empty sequence in the case of
margin sequences). This is acceptable as long as the distance infor-
mation is kept. Since the leaves actually present the same margin
shape, no information is lost by saying that the distance to all
the species with an entire margin is the same, as any confusion will
be resolved by the other descriptors. This is however a major prob-
lem for classifiers that give an answer in terms of votes only, and
lose track of the indeterminacy a measure of distance to classes
provides. The fact that a decision on the class is forced in the def-
inition of the 1vs1 SVMs explains why the kernel SVM classifica-
tion performs so poorly, as entire margins will lead to
classification errors instead of class indifferenciation.

To refine this analysis, we perform the same classification on a
restriction of the training set to species that are not supposed to
present such flat, untoothed margins. They represent 60 of the
88 initial species, and 2850 images to process. The removed species
being allegedly the easiest regarding the margin, the performance
can be expected to drop even if the number of classes is lower. The
results of this experiment are given in Fig. 7.

The first consequence is that K-SVM is now as competitive as
the other methods, when the classes all sent to a single point are
suppressed. It equals the species median sequences, which tends
to prove that the fact that variability is taken into account does
not compensate the flattening caused by the projection on the ker-
nel. This fact is underlined by the performance of [CSSP], which
deals with the variability of classes and ranks at the same level
as the rigid median sequence, but much lower than the raw
sequence data, that still conveys a richer information since the
matching performance of [CSSP] remains lower than with [LMS].

Concerning other methods that were originally designed to con-
stitute stand-alone descriptions of the leaf, it is more pertinent to
compare them not only with the margin descriptor but also with
the full set of shape descriptors we introduced [Folia]. We used
the same approach with all methods, building a single model per
species, and classifying a new example according to the distances
to each of the models. For greater genericity, we returned to the
full dataset with entire species, since a decision will be made this
time through the use of other descriptors. The performances we
obtained are given in the Fig. 8.



Fig. 8. Classification results for complete the leaf descriptors: [LMS] (Median),
[Folia] (Median + Gaussian), [CBoW] (Average), [HoCS] (Average) and
[IDSC] (Aligned Average).

Table 1
Comparison of classification time for one example and space requirements of the
different methods

Method Classif. Time Memory Space

[HoCS] (Average) 0.27 ms 450 Kb
[IDSC] (Average) 15.53 ms 1400 Kb
[CSSP] (Gaussian) 0.36 ms 90 Kb
[LMS] (Median) 8.71 ms 18 Kb
[Folia] (Median + G) 9.38 ms 170 Kb

[HoCS] (Matching) 111.42 ms 35000 Kb
[IDSC] (Matching) 653.61 ms 115000 Kb
[LMS] (Matching) 438.22 ms 1700 Kb
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The results show that our compact description, consisting of
light vectors (of size 9 + 5 + 5) plus a sequence like structure,
slightly outperforms larger histogram-like features such as bags-
of-words (size 1000) and HoCS (size 21 � 25) and competes with
the extensive description that is shape contexts (size 20� 64 and
alignment required). It justifies the use of an explicit high-level
description of leaves since it performs comparably to state-
of-the-art methods while providing at the same time an interpret-
able representation of what is captured from the image.

To complete this analysis, we measured the performance in
terms of execution time and memory requirements of the different
approaches, as displayed in Table 1. The tests were performed on a
2.7 GHz Intel Core i7 processor, with 4Go RAM.

Given our goal of developing a fully on-device mobile applica-
tion, and the factor 10 that generally can be measured between
the execution times on computer and smartphone, any kind of
matching process would be irrelevant. Our method offers then
the best compromise between performance and lightness of execu-
tion, giving the correct the species among the first five answers in
more than 80% of cases, with a classification time under 10 ms.
6. Conclusions

The approach presented in this paper introduces a very explicit
structured representation as a way to describe and synthesize the
information present on a leaf margin, while decorrelating it from
the other shapes of a leaf. The simple and efficient tools proposed
to work with this description allow to consider it as a fundamental
part of a species recognition process.

Combined with a compact vectorial description of a leaf’s global
and local shapes, it proves to convey as much information for clas-
sification as state-of-the-art shape descriptors, generally consisting
of a heavier definition. The classification performance, along with
the high-level visual representation it provides, have led us to
include this method in our tree species identification application
for iPhone 1 with satisfying results.

The main limitation of this structural approach is the difficulty
of taking into account the variability of classes. This results in
certain drawbacks regarding classification algorithms, which have
difficulties in including both the spatial dimension and the hetero-
geneity of the species in their processing. A solution would be to
use string processing tools to create a spatialized representation
of variability that would allow a better understanding of this
aspect, but it stills constitutes a challenge for structured
representations.

However, using sequences for leaf margins proves to be a very
effective way of keeping track of all the discriminant information
on a leaf contour, and might open way to a semantic interpretation
of the margin shape. Such a possibility could be very interesting in
the context of an interactive educational application, as a powerful
tool not only to identify tree species but more importantly to trans-
mit a recognition skill necessary for a further exploration of
botany.
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