
Distributed algorithms for networks – Final exam
• Duration: 2h.

• Documents, calculators and dictionaries allowed.

• Exercises are independent.

• Any unjustified answer will bear no point, but presenting intuitions is encour-
aged.

• You may answer in english or french.

Computing diameter in CONGEST
1. Give a O(n)-round procedure in the CONGEST model testing whether a graph has diameter

at most 2, i.e. such that every node accepts if and only if the graph has diameter at most 2.

2. Using a reduction from Set-Disjointness, prove that this is tight (up to polylogarithmic
factors), even when restricted to graphs of diameter at most 3. In other words, for every
instance (SA, SB) of Set-Disjointness, construct a graph G of diameter at most 3 such
that G has diameter 2 if and only if (SA, SB) is a positive instance of Set-Disjointness.

Certifying existential FO
A first order sentence is said to be existential if it can be written as ∃x1 · · · ∃xk φ(x1, . . . , xk)
where x1, . . . , xk are vertices and φ is a quantifier-free formula. Give a O(k log n + k2) local
certification process for existential FO sentences with k quantifiers.

Edge-coloring trees
Consider the setting we had for the sinkless orientation lower bound: a 3-regular tree T where the
nodes are white or black (such that these colors form a proper 2-coloring).

1. Assuming each node knows the color of its incident edges in a 4-edge-coloring of T , construct
a sinkless orientation of T in 0 rounds.

2. Deduce a lower bound for computing a 4-edge-coloring.

Improved randomized coloring
Let G be an n-vertex graph of maximum degree ∆ and 0 < ε < 1. We recall the randomized
procedure used to (1 + ε)∆-color G during the classes in O(log n) rounds. At each iteration, each
node v picks randomly a color among the colors that are not previously taken by its neighbors.
If no neighbor of v chose the same color, then v gets permanently colored with it, and tells its
neighbors. Otherwise, v forgets its color and waits for the next iteration.

The goal of this exercise is to improve the complexity to O(
√

log n) rounds.
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1. In this question, we assume that ∆ ⩽ 2
√

log n. We run the above procedure for k = 4
√

log n/ε
iterations.

(a) Show that, at each iteration, each node gets colored with probability at least ε/2.
(b) Show that the probability that a fixed path of length k in G stays fully uncolored after

k iterations is at most n−8/ε.
(c) As a function of n, k and ∆, how many paths of length k can G contain at most? Deduce

that w.h.p., the connected components of the graph induced by the uncolored vertices
have diameter at most k.

(d) Propose an algorithm running in O(
√

log n) rounds to (1 + ε)∆-color G in that case.

2. We now forget the assumption ∆ ⩽ 2
√

log n. We recall the so-called Chernoff’s bound:
Suppose X1, X2, . . . , Xn are independent random variables taking values in {0, 1}. Let X =
X1 + · · · + Xn and µ = E[X]. For every 0 < δ < 1, we have

P(X /∈ [µ(1 − δ), µ(1 + δ)]) ⩽ 2e−δ2µ/3

(a) Show that, in one round, one can partition the vertices of G into k = ε2∆/(100 log n)
parts such that w.h.p., each part induces a subgraph of degree at most ∆/k · (1 + ε/3).

(b) Conclude.

Coloring interval graphs
The k-th power of G, denoted by Gk is the graph on V (G) where u, v are adjacent if and only if
they are at distance at most k in G. We also denote by ω(G) the size of the largest clique in G.
Remind that X is a (α, β)-ruling set if vertices of X are pairwise at distance at least α and every
vertex of G is at distance at most β from X.

1. Prove that a maximal independent set is a (2, 1)-ruling set.

2. Deduce an algorithm (in the LOCAL model) that computes a (k + 1, k)-ruling set. What is
its complexity?

We assume that G is an interval graph, that is an intersection graph of intervals of the real
line. In other words, every vertex u can be represented as an interval [au, bu] and two vertices are
adjacent if and only if the corresponding intervals intersect. Let k ≥ 5 and X be a (k, k − 1)-ruling
set of the interval graph G. A box is the neighborhood of some vertex in X.

3. Prove that, boxes are anti-complete, that is, there is no edge between N(x) and N(y) for
every x, y ∈ X.

4. Let G′ be the graph obtained from G by deleting the boxes. What can you say about
diameters of connected components of G′?

5. Assume that the following holds: let G be an interval graph and u, v be two vertices at
distance at least ω(G). Any proper coloring of N(u) ∪ N(v) can be extended into a proper
(ω(G)+1)-coloring of all vertices of G whose intervals contain a value in [min(au, av), max(bu, bv)].

Propose an algorithm (in the LOCAL model) to compute a (ω(G) + 1)-coloring of G. What
is its complexity?
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