Laurent Feuilloley

CNRS & University of Lyon

SIROCCO 2022 June 27th

Distributed computing Formal methods

Distributed computing

- > Locality in networks

Formal methods

- o automata
- D Logic

Distributed computing Formal methods

Same qual: Check correctness efficiently

Distributed computing Formal methods
Same qoal: Check correctness efficiently

→ Fault-tolerance → Critical systems

Properties to check

Node labels properties

Ex.: k-coloring

Edge labels properties

Ex: Spanning tree

Network properties

Ex: planarity

Distributed checking

Computational model

Distributed decision

Distributed checking

Computational model

Locality + small messages (reduce overhead)

Distributed decision

Unanimous accept (reject -> launch reset)

k-coloring

Spanning tree

k-coloring

Spanning tree

k-coloring

Spanning tree

k-coloring

Spanning tree

A labeling that certifies the property

A labeling that certifies the property

Expected labels: distances to a root

Checking: consistency of distances

A labeling that certifies the property

Expected labels:
distances to a root
Checking:
consistency of distances

Local certification = A checking procedure s.t. exists accepted labeling \Leftrightarrow the property is satisfied

D Nodes equipped with unique IDs

Nodes equipped
 with unique IDs
 Labels: map of
 the graph

- D Nodes equipped with unique IDs
- D Labels: map of the graph
- D Check: equal + property

- D Nodes equipped with unique IDs
- Delay Labels: map of the graph
- D Check: equal + property

Problem: huge certificates

Main question

When can we use a compact certification?

= (poly)log n-size certificates

Main question

When can we use a compact certification?

= (poly)log n-size certificates

Not always ...

Symmetry

Sp. tree Planarity

• • • • •

The model checking approach

Typical theorem:

It is possible to check efficiently that that a logical Formula of FORMULA CLASS is satisfied on structures of STRUCTURE CLASS

The model checking approach

Typical theorem:

It is possible to check efficiently that that a logical Formula of FORMULA CLASS is satisfied on structures of STRUCTURE CLASS

Example: FIRST- ORDER (FO) & WORDS

Logic Formulas on words

Examples: ▷ every 'a' is followed by a'b' ∈ FO
▷ only 'a' and even length ∈ MSO

Theorem and application to certification

Theorem: For properties on words, expressible in MSO = recognizable by an automaton

Theorem and application to certification

Theorem: For properties on words, expressible in MSO = recognizable by an automaton Consequence: MSO properties can be certified with O(1) bits in edge-labeled paths.

Theorem and application to certification

Theorem: For properties on words, expressible in MSO = recognizable by an automaton

Consequence: MSO properties can be certified with O(1) bits in edge-labeled paths.

 $\frac{\text{MSO}}{\text{formula}} \xrightarrow{\text{Th.}} \frac{1}{\sqrt{3}} \xrightarrow{\text{O}_3} \frac{1}{\sqrt{3}} \xrightarrow{\text{O}$

Bounding some graph parameters Parameter Definition Examples (small, large)

Treewidth

Treedepth

Theorems (old and new)

Thms (old): MSO model checking takes:

| > IF treewidth $\leq t$, O(F(t)·n) (enormous F)
| > IF treedepth $\leq t$, O(g(t)·h) (reasonable g)

Theorems (old and new)

Thms (old): MSO model checking takes:

| \triangleright IF treewidth \leq t, \bigcirc (\vdash (enormous f)
| \triangleright IF treedepth \leq t, \bigcirc (\vdash (\vdash h). (reasonable g)

Thms (new): MSO certification takes:

| D If treewidth $\leq t$, O(log²n).
| D If treedepth $\leq t$, $\Theta(\log n)$.

A technique: kernelization

$$Y = \exists x_1 \forall x_2 \dots \exists x_k \dots$$

A technique: kernelization

$$Y = \exists x_1 \forall x_2 \dots \exists x_k \dots$$

A technique: kernelization

$$Y = \exists x_1 \forall x_2 \dots \exists x_k \dots$$

Local certification of Y

- b labels: kernel 773 + kernel certification
- b checking:
 local consistency
 + Y is satisfied in the

Application to the forbidden minor question $\mathcal{H} = a$ finite set of graphs $\mathcal{C}_{\mathcal{H}} = \{G: \forall H \in \mathcal{H}, H \text{ is } \underline{not} \text{ a minor of } G\}$

Question: Is it true that, for all 3C,

Cy has a compact certification?

Application to the forbidden minor question $\mathcal{H} = a$ finite set of graphs $\mathcal{C}_{\mathcal{H}} = \{G: \forall H \in \mathcal{H}, H \text{ is } \underline{not} \text{ a minor of } G\}$

Question: Is it true that, for all 3C,

Cy has a compact certification?

MSO+ treewidth → IF H > Planar, yes, O(log²n)
MSO+ treedepth → IF H > Path, yes, O(log n)