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Classic network assumptions

Classic LOCAL/CONGEST algorithms are designed for:

(a) General networks (b) Bounded degree

Two reasons for that:

I Fundamental settings.

I Locally checkable structures (we can raise alarm if needed).
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Limitations of these two classes

These classes do not capture the properties of real-world networks.

Example: unit-disks are a model for wireless networks.

I The degree is unbounded.

I The independence number is low

→ Classic algorithms do not give a good estimate.
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Most network structures cannot be checked

There exists algorithms for unit-disks, planar, small-diameter etc.

But these network structures cannot be checked locally.

Example: Trees cannot be checked locally.
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New notion: Local certification

Local certification is a mechanism to allow local checking.

Idea: A labeling of the nodes that certifies that the network
structure, and that can be checked locally. Coming from another
algorithm, or from the network designer.

Requirements: There exists a local verification algorithm s.t.:

I For every graph in the class, there exists a labeling such that
the algorithm accepts.

I For every graph not in the class, for every labeling, the
algorithm rejects on at least one node.

About the locality: 1 round or O(1) rounds.
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Example: local certification of trees
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Example: local certification of trees
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Example: local certification of trees
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Can we certify any graph class?

Question: Take a graph class C (i.e. an infinite set of graphs).
Can we design a labeling and a local verification algorithm that
fulfill the requirements?

Answer: Yes! (By abusing the assumptions and having large
certificates.)
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Optimal certificate size

Measure of quality: the size of the certificates.

Example: for trees,

I the optimal certificate size for trees is > 0, and ≤ O(n2),

I the distance labeling gives O(log n)

I O(log n) is actually optimal
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Research program

→ Design optimal certification for relevant graph classes.

List of relevant classes:

I Classes used in DC: trees, grids, planar, unit-disk, cliques,
small-diameter

I Classic classes: planar, chordal, interval, cographs, bipartite

I Families of classes: H-free, H-minor-free.

19



A case study: 4 approaches to planar graphs

Embedding Minors

Faces Spanning tree
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Planar graphs: via the embedding

Embedding characterization: Planar graphs are the graphs that
can be embedded in the plane without edge crossings.

Certification idea: Give the coordinates to the nodes.
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Planar graphs: via the embedding

Problem: The nodes can be fooled by the coordinates.
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Planar graphs: via minors

Minor characterization: Planar graphs are the graphs with no K5

or K3,3 minor.
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Planar graphs: via faces

I Given a planar embedding, we can define faces.

I But this is not enough the surface can be more complicated.

I Euler formula: |V | − |F |+ |E | = 2, only in planar graphs.
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Planar graphs: via faces

Certification idea:

I Use rotation systems to encode faces.

I Use a spanning tree to gather |V |, |F | and |E | at one node.
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Planar graphs: via a spanning tree

Spanning tree characterization: For any spanning tree, there is
no crossing of the outer edges.
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Planar graphs: summary and theorem

Embedding Minors Faces Spanning tree

Theorem: Planar graphs can be certified with O(log n) bits.*

33



*: Taming high degrees

Problem: In the certifications given, the certificate size can be of
size δ log n, where δ is the vertex degree.

Solution: In every planar graph there exists a vertex of degree at
most 6. → Degeneracy ordering → Certificate load balancing.
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A class that requires large certificates

Class: Graph of diameter at most 3.
Model: Look at distance 1.
Theorem: Optimal certificate size in Ω̃(n).
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Status and research directions

Direction 1: Aim for a generalization of the log n region.
Direction 2: Target other relevant graph classes and parameters.
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Generalization to H-minor-free

I H-minor-free is a natural generalization of the ”good classes”.
I They are hereditary, which is good for compact certification.
I But we don’t know how to certify that something is not there.
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Generalization to H-minor-free

Open question: Does every graph class characterized by forbidden
minors have a compact local certification?

Theorem: When the minors are small (|H| ≤ 4, or |H| = 5 with a
special structure), the answer is positive.

A key tool: Certification of 2(and 3)-connectivity.
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Other classes and parameters

List of relevant classes:

I Classes used in DC: trees, grids, planar, unit-disk, cliques,
small-diameter.

I Classic classes: planar, chordal, interval, cographs, bipartite.

Open questions:

I Do unit-disk graphs have a compact certification?

I Can we certify treewidth k efficiently?

I What about k-connectivity?
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Bibliographic pointers

Local certification papers mentioned:

I Proof-labeling schemes (Korman, Kutten, Peleg - 2010).
doi:10.1007/s00446-010-0095-3

I Memory-efficient self stabilizing protocols for general networks
(Afek, Kutten, Young - 1990). doi:10.1007/3-540-54099-7 2

I Locally checkable proofs in distributed computing
(Göös, Suomela - 2016). doi:10.4086/toc.2016.v012a019

Tutorial on local certification

I Introduction to local certification (Feuilloley - 2021).
doi:10.46298/dmtcs.6280 + Gem talk at PODC (on youtube).
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Bibliographic pointers

Certification of planar and bounded-genus graphs

I Compact distributed certification of planar graphs (Feuilloley,
Fraigniaud, Montealegre, Rapaport, Rémila, Todinca, 2021)
doi:10.1007/s00453-021-00823-w + Talks at PODC by
Montealegre

I Local Certification of Graphs with Bounded Genus (Same as
above.) arxiv:2007.08084

I Local certification of graphs on surfaces (Esperet, Leveque -
2021) arxiv:2102.04133

Small diameter lower bound

I Approximate proof-labeling schemes (Censor-Hillel, Paz, Perry
- 2020) doi:10.1016/j.tcs.2018.08.020
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Bibliographic pointers

Certification of H-minor-free graphs

I Local certification of graph decompositions and applications
to minor-free classes (Bousquet, Feuilloley, Pierron - 2021)
arxiv:2108.00059 + BA at DISC.

Other specific classes

I Compact Distributed Interactive Proofs for the Recognition of
Cographs and Distance-Hereditary Graphs (Montealegre,
Raḿırez-Romero, and Rapaport - 2021) arxiv:2012.03185
(+ personal communication)
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