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Distributed graph algorithms

▶ Network of machines modeled as a
graph.

▶ Communication by synchronous
rounds.

▶ Restrict/count communication, not
computation.

▶ Each node must hold its part of the
solution.

▶ Notations: n nodes, diameter D.

▶ (Unique identifiers.)
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LOCAL model

▶ No constraint on message size.

▶ Complexity: number of rounds.

▶ Theorem: k-round algorithm
equivalent to a mapping from distance
k neighborhood to output.

▶ Generic upper bound on complexity:
O(n) or O(D).

▶ Example of a global problem:
2-coloring a path.
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CONGEST model

▶ Constraint: O(logn)-bit messages.

▶ Complexity: Number of rounds.

▶ Generic upper bound: O(n2).



Locality and congestion in living beings

Locality Congestion



Local problems

Definition: Locally checkable labelings
are the class of problems with:

▶ constant size outputs

▶ where the output can be checked
locally.

Examples: k-coloring, maximal inde-
pendent set, dominating set.
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Landscape theorem for LCLS

Theorem [many authors]: In the LOCAL model, in bounded-degree trees, the
complexity of solving an LCL can only be of the following form: O(1), Θ(log∗ n),
Θ(log n), Θ(n1/k), Θ(n).
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What about unbounded degree?

Question: Does the landscape survives if we remove the bounded degree
constraints?

No. :(

Theorem: For ‘any’ function f , there exists an LCL that has complexity Θ(f ).

Equivalent to the following:

Theorem: For ‘any’ function f , there exists a local checker such that the
maximum diameter of the trees accepted is Θ(f ).



Local checkers

Local checker: A mapping from radius-k neighborhoods to accept/reject.
A tree is accepted by a local checker if all nodes accept.

Example:

Local checker for caterpillars. Every node checks that it is:

▶ A leaf or

▶ A node of degree d with 2 neighbors of degree d − 1 or d + 1

▶ an “endpoint”



Local checkers
Local checker: A mapping from radius-k neighborhoods to accept/reject.
A tree is accepted by a local checker if all nodes accept.

Example:

Local checker for caterpillars. Every node checks that it is:

▶ A leaf or

▶ A node of degree d with 2 neighbors of degree d − 1 or d + 1

▶ an “endpoint”



Local checkers
Local checker: A mapping from radius-k neighborhoods to accept/reject.
A tree is accepted by a local checker if all nodes accept.

Example:

Local checker for caterpillars. Every node checks that it is:

▶ A leaf or

▶ A node of degree d with 2 neighbors of degree d − 1 or d + 1

▶ an “endpoint”



Local checkers
Local checker: A mapping from radius-k neighborhoods to accept/reject.
A tree is accepted by a local checker if all nodes accept.

Example:

Local checker for caterpillars. Every node checks that it is:

▶ A leaf or

▶ A node of degree d with 2 neighbors of degree d − 1 or d + 1

▶ an “endpoint”



Max diameter of a local checker

▶ Fix a local checker.

▶ For each tree accepted, consider its
diameter D, as a function of the
number of nodes n.

▶ Focus on the maximum diameter, and
smoothed version of it captured by a
function.
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Any diameter by padding

Theorem: For ‘any’ function f , there exists a local checker such that the maximum
diameter of the trees accepted is Θ(f ).

To get the LCL theorem, define an LCL such that:

▶ on the graph accepted by the local checker the complexity is the diameter (global
problem)

▶ otherwise it is easier.



A landscape for nice unbounded degree?

The construction is not very satisfying:

▶ Arbitrary jump in degree and local computation of f

▶ Does not feel homogeneous/intrinsic/natural.

Question: Can we define reasonable constraints on local checkers and get back a nice
landscape for maximum diameter of trees?



Two constraints

Laminated trees Polynomial constraints



Landscape for constrained trees

Theorem: For laminated trees with polynomial constraints, the
possible maximum diameters are:

O(1), Θ(log n/ log log n), Θ(log n), Θ(na/b), and Θ(n)

with a/b ∈ [1/3, 1/2].



Back to life (science)

Take home message: There are landscape theorem in distributed computing, and
now in “pure” combinatorics. They are useful and interesting.

Questions:

▶ Relevance to biology? Same flavor as L-systems.

▶ Dynamic vs static. Fixing ”faults”.

▶ Beyond deterministic maximum diameter.

▶ Beyond trees.


