On the diameter of locally constrained trees

from distributed computing to living beings?

Nicolas Bousquet **Laurent Feuilloley** Antonin Kiladjian Théo Pierron

Combinatorics and Life Science Lyon · Fall 2025

- Network of machines modeled as a graph.
- Communication by synchronous rounds.
- ► Restrict/count communication, not computation.
- ► Each node must hold its part of the solution.
- ► Notations: *n* nodes, diameter *D*.
- ► (Unique identifiers.)

- Network of machines modeled as a graph.
- Communication by synchronous rounds.
- ► Restrict/count communication, not computation.
- ► Each node must hold its part of the solution.
- ► Notations: *n* nodes, diameter *D*.
- ► (Unique identifiers.)

- Network of machines modeled as a graph.
- Communication by synchronous rounds.
- ► Restrict/count communication, not computation.
- ► Each node must hold its part of the solution.
- \blacktriangleright Notations: *n* nodes, diameter *D*.
- ► (Unique identifiers.)

- Network of machines modeled as a graph.
- Communication by synchronous rounds.
- ► Restrict/count communication, not computation.
- ► Each node must hold its part of the solution.
- ► Notations: *n* nodes, diameter *D*.
- ► (Unique identifiers.)

LOCAL model

- ► No constraint on message size.
- ► Complexity: number of rounds.
- ► Theorem: *k*-round algorithm equivalent to a mapping from distance *k* neighborhood to output.
- Generic upper bound on complexity: O(n) or O(D).
- ► Example of a global problem: 2-coloring a path.

LOCAL model

- ► No constraint on message size.
- ► Complexity: number of rounds.
- ► Theorem: *k*-round algorithm equivalent to a mapping from distance *k* neighborhood to output.
- Generic upper bound on complexity: O(n) or O(D).
- ► Example of a global problem: 2-coloring a path.

CONGEST model

- ► Constraint: *O*(*logn*)-bit messages.
- ► Complexity: Number of rounds.
- ► Generic upper bound: $O(n^2)$.

Locality and congestion in living beings

Local problems

Definition: Locally checkable labelings are the class of problems with:

- ► constant size outputs
- where the output can be checked locally.

Examples: *k*-coloring, maximal independent set, dominating set.

Local problems

Definition: Locally checkable labelings are the class of problems with:

- ► constant size outputs
- where the output can be checked locally.

Examples: *k*-coloring, maximal independent set, dominating set.

Local problems

Definition: Locally checkable labelings are the class of problems with:

- ► constant size outputs
- where the output can be checked locally.

Examples: *k*-coloring, maximal independent set, dominating set.

Theorem [many authors]: In the LOCAL model, in bounded-degree trees, the complexity of solving an LCL can only be of the following form: O(1), $\Theta(\log^* n)$, $\Theta(\log n)$, $\Theta(n^{1/k})$, $\Theta(n)$.

Theorem [many authors]: In the LOCAL model, in bounded-degree trees, the complexity of solving an LCL can only be of the following form: O(1), $\Theta(\log^* n)$, $\Theta(\log n)$, $\Theta(n^{1/k})$, $\Theta(n)$.

Theorem [many authors]: In the LOCAL model, in bounded-degree trees, the complexity of solving an LCL can only be of the following form: O(1), $\Theta(\log^* n)$, $\Theta(\log n)$, $\Theta(n^{1/k})$, $\Theta(n)$.

USUAL LANDSCAPE:

Theorem [many authors]: In the LOCAL model, in bounded-degree trees, the complexity of solving an LCL can only be of the following form: O(1), $\Theta(\log^* n)$, $\Theta(\log n)$, $\Theta(n^{1/k})$, $\Theta(n)$.

What about unbounded degree?

Question: Does the landscape survives if we remove the bounded degree constraints?

No. :(

Theorem: For 'any' function f, there exists an LCL that has complexity $\Theta(f)$. Equivalent to the following:

Theorem: For 'any' function f, there exists a local checker such that the maximum diameter of the trees accepted is $\Theta(f)$.

Local checker: A mapping from radius-k neighborhoods to accept/reject. A tree is accepted by a local checker if all nodes accept.

Local checker: A mapping from radius-k neighborhoods to accept/reject. A tree is accepted by a local checker if all nodes accept.

Example:

Local checker for caterpillars. Every node checks that it is:

- ► A leaf or
- ▶ A node of degree d with 2 neighbors of degree d-1 or d+1
- ► an "endpoint"

Local checker: A mapping from radius-k neighborhoods to accept/reject. A tree is accepted by a local checker if all nodes accept.

Example:

Local checker for caterpillars. Every node checks that it is:

- ► A leaf or
- ▶ A node of degree d with 2 neighbors of degree d-1 or d+1
- ► an "endpoint"

Local checker: A mapping from radius-k neighborhoods to accept/reject. A tree is accepted by a local checker if all nodes accept.

Example:

Local checker for caterpillars. Every node checks that it is:

- ► A leaf or
- ▶ A node of degree d with 2 neighbors of degree d-1 or d+1
- ► an "endpoint"

- ► Fix a local checker.
- ► For each tree accepted, consider its diameter *D*, as a function of the number of nodes *n*.
- ► Focus on the maximum diameter, and smoothed version of it captured by a function.

- ► Fix a local checker.
- ► For each tree accepted, consider its diameter *D*, as a function of the number of nodes *n*.
- ► Focus on the maximum diameter, and smoothed version of it captured by a function.

- ► Fix a local checker.
- ► For each tree accepted, consider its diameter *D*, as a function of the number of nodes *n*.
- ► Focus on the maximum diameter, and smoothed version of it captured by a function.

- ► Fix a local checker.
- ► For each tree accepted, consider its diameter *D*, as a function of the number of nodes *n*.
- ► Focus on the maximum diameter, and smoothed version of it captured by a function.

Any diameter by padding

Theorem: For 'any' function f, there exists a local checker such that the maximum diameter of the trees accepted is $\Theta(f)$.

To get the LCL theorem, define an LCL such that:

- ▶ on the graph accepted by the local checker the complexity is the diameter (global problem)
- ▶ otherwise it is easier.

A landscape for nice unbounded degree?

The construction is not very satisfying:

- ► Arbitrary jump in degree and local computation of f
- ► Does not feel homogeneous/intrinsic/natural.

Question: Can we define reasonable constraints on local checkers and get back a nice landscape for maximum diameter of trees?

Two constraints

Polynomial constraints

Landscape for constrained trees

Theorem: For laminated trees with polynomial constraints, the possible maximum diameters are:

O(1), $\Theta(\log n / \log \log n)$, $\Theta(\log n)$, $\Theta(n^{a/b})$, and $\Theta(n)$ with $a/b \in [1/3, 1/2]$.

Back to life (science)

Take home message: There are landscape theorem in distributed computing, and now in "pure" combinatorics. They are useful and interesting.

Questions:

- ► Relevance to biology? Same flavor as L-systems.
- ▶ Dynamic vs static. Fixing "faults".
- ► Beyond deterministic maximum diameter.
- ► Beyond trees.