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Distributed graph algorithms

ACHINES COMMUNICATION
» Network of machines modeled as a } L /CHANNEL

graph.

» Communication by synchronous
rounds.

» Restrict/count communication, not
computation.

» Each node must hold its part of the
solution.

» Notations: n nodes, diameter D.
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LOCAL model

v

No constraint on message size.
Complexity: number of rounds.

Theorem: k-round algorithm
equivalent to a mapping from distance
k neighborhood to output.

Generic upper bound on complexity:
O(n) or O(D).

Example of a global problem:
2-coloring a path.
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CONGEST model

» Constraint: O(logn)-bit messages.
» Complexity: Number of rounds.
» Generic upper bound: O(n?).




Locality and congestion in living beings
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Local problems

Definition: Locally checkable labelings
are the class of problems with:

» constant size outputs

» where the output can be checked
locally.

Examples: k-coloring, maximal inde-
pendent set, dominating set.
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Landscape theorem for LCLS

Theorem [many authors]: In the LOCAL model, in bounded-degree trees, the
complexity of solving an LCL can only be of the following form: O(1), ©(log™ n),

O(log n), ©(n'/¥), ©(n).
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What about unbounded degree?

Question: Does the landscape survives if we remove the bounded degree
constraints?

No. :(
Theorem: For ‘any’ function f, there exists an LCL that has complexity ©(f).

Equivalent to the following:

Theorem: For ‘any’ function f, there exists a local checker such that the
maximum diameter of the trees accepted is ©(f).



Local checkers

Local checker: A mapping from radius-k neighborhoods to accept/reject.
A tree is accepted by a local checker if all nodes accept.
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Local checker for caterpillars. Every node checks that it is:

» A leaf or
» A node of degree d with 2 neighbors of degree d — 1 or d +1

» an “endpoint”
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Max diameter of a local checker

A ’Diarnetek D

» Fix a local checker.

» For each tree accepted, consider its
diameter D, as a function of the
number of nodes n.

» Focus on the maximum diameter, and
smoothed version of it captured by a
function.
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Any diameter by padding

Theorem: For ‘any’ function f, there exists a local checker such that the maximum
diameter of the trees accepted is ©(f).
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To get the LCL theorem, define an LCL such that:

» on the graph accepted by the local checker the complexity is the diameter (global
problem)

» otherwise it is easier.



A landscape for nice unbounded degree?

The construction is not very satisfying:
» Arbitrary jump in degree and local computation of f
» Does not feel homogeneous/intrinsic/natural.

Question: Can we define reasonable constraints on local checkers and get back a nice
landscape for maximum diameter of trees?



Two constraints

Laminated trees Polynomial constraints
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Landscape for constrained trees

Theorem: For laminated trees with polynomial constraints, the
possible maximum diameters are:

O(1), ©(log n/ loglog n), ©(log n), ©(n**), and ©(n)

with a/b € [1/3,1/2].



Back to life (science)

Take home message: There are landscape theorem in distributed computing, and
now in “pure” combinatorics. They are useful and interesting.
Questions:

» Relevance to biology? Same flavor as L-systems.

» Dynamic vs static. Fixing "faults”.

» Beyond deterministic maximum diameter.
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Beyond trees.



