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channels.

I Unique identifiers.
I In this talk:

I Every node sees its
neighbors,

I runs the algorithm,
I outputs a binary decision.
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Local recognition of graph
classes

Let C be a class of connected graphs (e.g. planar graphs)

Local recognition of C: A local decision algorithm such that:

I If G ∈ C then all the vertices accept.

I If G /∈ C then at least one vertex rejects.

Examples:

I Graphs of degree 3 can be recognized locally.

I For any set S ⊆ N, graph with all degrees in S can be
recognized locally.

I Trees cannot be recognized locally



Quick proof for trees

I Consider a graph with a unique cycle that is too large to fit in
the view of a node.

I For correctness, a least one node v rejects.

I Now, remove an edge far from v , to cut the cycle. Rerun the
checking. Node v still rejects. Contradiction.



Introducing local certification

I Idea: Use additional information, in the form of labels.

I For trees: the distances from an arbitrarily chosen node.

I Sanity check at each node: the distances locally make sense.

I Key property: if the graph has a cycle, at least one node will
reject.
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Definition and story

Definition: A local certification of a graph class C is a local
decision algorithm such that :

1. For G ∈ C, there exists certificate assignment that makes all
vertices accept.

2. For G /∈ C, for any certificate assignment, at least one
vertex rejects.

Story:

I A prover is trying to convince all nodes that the graph is in
class C (which might be true or false).

I If the graph is indeed in the class, it succeeds.

I If the graph is not in the class, it cannot succeed.



Any class can be certified

Theorem: Any graph class C can be certified locally.

When G ∈ C the prover gives:

I map of graph with identifiers

Nodes check:

I Same map as neighbors

I Consistent with local view

I Graph given belongs to C.

(Unique identifiers are essential here to avoid symmetry issues.)



Certificate size

Question: For a class C, what is the minimum certificate size?

Previous slide → Upper bound of O(n2) bits.

I For some classes O(1) bits suffice.
→ degree-3 graphs, 3-colorable graphs.

I For some classes Ω(n2) is needed
→ Symmetric graphs, non-3-colorable graphs.

I A key size is Θ(log n) (aka ”compact local certifications”).
→ Trees, planar graphs.



Certifying planarity

Theorem: We can certify planar graphs with O(log n) bits.
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Part 1: Rotational system

I First component: orientations of the edges around each node.

I Second component: orientations of the edges around each
face.

I The consistency a system can be checked locally
→ Good for certification, if we allow edge certificates.
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I Plan: Gather the information at a leader node for checking.
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I Euler checking: Use the tree to gather the information.



Part 2: Checking Euler formula

I A rotational system → local embedding. Maybe not planar.

I Euler formula characterizes planar embeddings.

I Plan: Gather the information at a leader node for checking.

I For a leader:

I Euler checking: Use the tree to gather the information.



Part 2: Checking Euler formula

I A rotational system → local embedding. Maybe not planar.

I Euler formula characterizes planar embeddings.

I Plan: Gather the information at a leader node for checking.

I For a leader:

I Euler checking: Use the tree to gather the information.



Part 2: Checking Euler formula

I A rotational system → local embedding. Maybe not planar.

I Euler formula characterizes planar embeddings.

I Plan: Gather the information at a leader node for checking.

I For a leader: Leader’s ID,

I Euler checking: Use the tree to gather the information.



Part 2: Checking Euler formula

I A rotational system → local embedding. Maybe not planar.

I Euler formula characterizes planar embeddings.

I Plan: Gather the information at a leader node for checking.

I For a leader: Leader’s ID,

I Euler checking: Use the tree to gather the information.



Part 2: Checking Euler formula

I A rotational system → local embedding. Maybe not planar.

I Euler formula characterizes planar embeddings.

I Plan: Gather the information at a leader node for checking.

I For a leader: Leader’s ID, Parent’s ID,

I Euler checking: Use the tree to gather the information.



Part 2: Checking Euler formula

I A rotational system → local embedding. Maybe not planar.

I Euler formula characterizes planar embeddings.

I Plan: Gather the information at a leader node for checking.

I For a leader: Leader’s ID, Parent’s ID, distance to leader

I Euler checking: Use the tree to gather the information.



Part 2: Checking Euler formula

I A rotational system → local embedding. Maybe not planar.

I Euler formula characterizes planar embeddings.

I Plan: Gather the information at a leader node for checking.

I For a leader: Leader’s ID, Parent’s ID, distance to leader

I Euler checking: Use the tree to gather the information.



Part 2: Checking Euler formula

I A rotational system → local embedding. Maybe not planar.

I Euler formula characterizes planar embeddings.

I Plan: Gather the information at a leader node for checking.

I For a leader: Leader’s ID, Parent’s ID, distance to leader

I Euler checking: Use the tree to gather the information.



Part 3: Getting rid of edge
certificates
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I Duplicating on both endpoints → size = max-degree
×O(log n)

I Planar graphs have degeneracy ≤ 6.

I Each edge certificate goes to the smallest-index vertex.
→ Ok for the verification phase, and O(log n) certificates!



Part 3: Getting rid of edge
certificates

I Rotational systems naturally translate into edge certificates.

I Duplicating on both endpoints → size = max-degree
×O(log n)

I Planar graphs have degeneracy ≤ 6.

I Each edge certificate goes to the smallest-index vertex.
→ Ok for the verification phase, and O(log n) certificates!



Part 3: Getting rid of edge
certificates

I Rotational systems naturally translate into edge certificates.

I Duplicating on both endpoints → size = max-degree
×O(log n)

I Planar graphs have degeneracy ≤ 6.

I Each edge certificate goes to the smallest-index vertex.
→ Ok for the verification phase, and O(log n) certificates!



Part 3: Getting rid of edge
certificates

I Rotational systems naturally translate into edge certificates.

I Duplicating on both endpoints → size = max-degree
×O(log n)

I Planar graphs have degeneracy ≤ 6.

I Each edge certificate goes to the smallest-index vertex.
→ Ok for the verification phase, and O(log n) certificates!



Forbidden minors

I Planar graphs = graphs that do not have K5,K3,3 as minors.

I Open question: Is it true that every class defined by
excluded minors can be certified with O(log n) bits?

I Known true for bounded-genus, small minors, planar minors.
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Origin: distributed computing

I A classic problem: Compute a spanning tree.

I Fault-tolerance: be able to detect locally if the tree is broken.

I Impossible if only the pointers are kept in memory, but
possible if one also keeps ID of and distance to the root.

I Algorithms that can cope with such faults are called
self-stabilizing.
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Analogy: Complexity theory

Class NP:

There exists a polytime verification algorithm A such that:

Input is correct ⇔ Exists c such that
A(c , input) accepts.

Local certification:

There exists a local sanity check A such that:

Input is correct ⇔ Exists c : V → labels such that
A(c , input) accepts at every node.



Analogy: Complexity theory

One can define many other analogues of the classic complexity
classes: probabilistic classes, interactive proofs, zero-knowledge,
polynomial hierarchy etc.



Analogy: Model checking

General model checking approach: Check efficiently that some
restricted properties on restricted structures.

Courcelle theorem: Any MSO formula can be checked in
polynomial-time in graphs of bounded treewidth.

Recent analogues: Any MSO formula can be certified with
O((poly) log n) bits in graphs on graphs of bounded
treedepth/treewidth/cliquewidth.

Techniques: Kernelization, automata theory.



Wrapping up

I Local certification is about checking locally a graph property
(or data structure), thanks to certificates.

I It originates from the study of fault-tolerance in distributed
computing.

I It is connected to several other areas of TCS.

I There are still exciting open questions!
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Thanks for your attention!

(I cannot be around for the rest of the week, do not hesitate to send me

an email for additional questions!)


