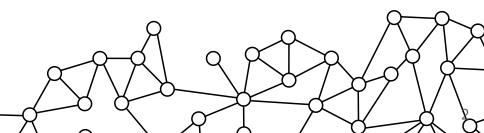
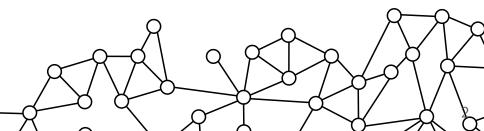
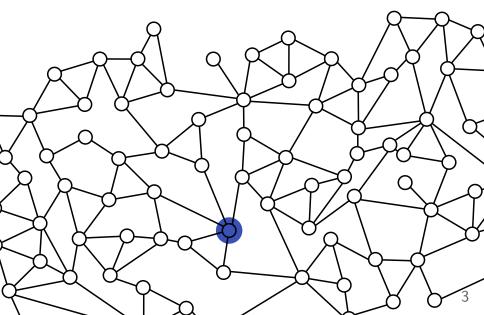
Local certification in distributed computing Error-sensitivity, uniformity, redundancy, and interactivity Laurent Feuilloley PhD Defense Supervised by Pierre Fraigniaud Université Paris Diderot · 19th September 2018

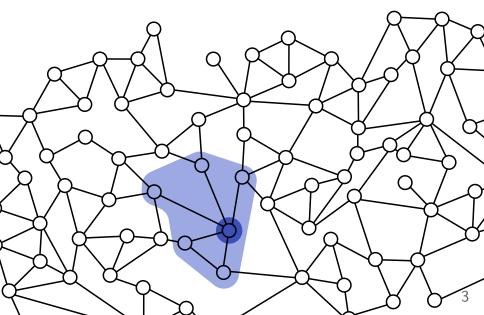
- ► *n* machines, interacting during computation, no coordinator.
- Linked together by communication channels.
- Network represented by a graph.

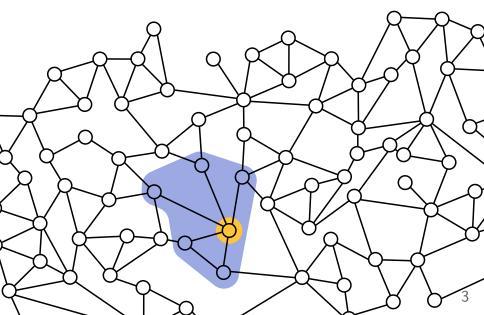


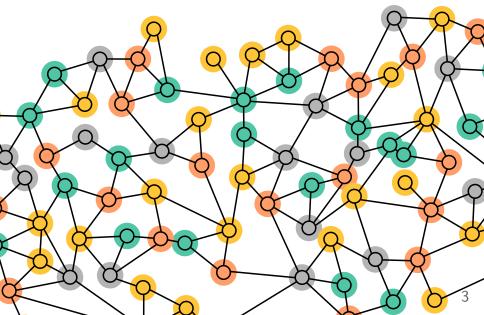
- ► *n* machines, interacting during computation, no coordinator.
- ► Linked together by communication channels.
- ► Network represented by a graph.
- LOCAL model [Linial 92, Naor-Stockmeyer 93, Peleg 00]
 - Synchronous message-passing.
 - ► No constraint on computational power and message size.
 - Identifiers on $O(\log n)$ bits.
 - Equivalent to a model with views.











Local decision

Local decision : checking the status of the network. [Itkis-Levin 94, Awerbuch-Patt-Shamir-Varghese 91, Afek-Kutten-Yung 97].

- Motivated by fault-tolerance, in particular self-stabilizing algorithms [Dolev 00].
- ► A (more) universal framework [Fraigniaud, Korman, Peleg 11].
- Distributed complexity theory.

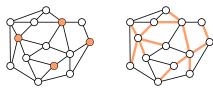
Formalization

Definitions :

- ► A configuration is a pair (G, x), where G is the graph, and x an input assignment.
- A *language* is set of configurations.

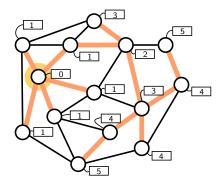
The decision rule :

- Based on its 1-view, every node makes one (local) decision : accept or reject.
- The configuration is (globally) accepted if and only if it is (locally) accepted everywhere.



Local certification

Additional information at the nodes, certifying the configuration. For spanning tree : distances and root-ID.



Formalization

Definition [Korman-Kutten-Peleg 05] : A certificate (or proof) assignment is a function $c : V \to \{0,1\}^*$, given by a prover. A certification scheme is a couple (prover,verifier).

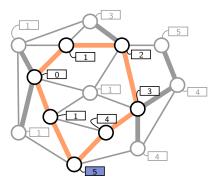
Correctness : A certification scheme is correct if, for all (G, x) :

 $(G, x) \in \mathcal{L} \Leftrightarrow$ there exists *c*, s.t. all nodes accept

Like in NP.

Spanning tree

Theorem [Itkis-Levin 94] : The scheme with distances and root-ID is a correct certification scheme.



Certificate size

Definition : The *certificate size* of a language is the minimum certificate size of correct certification scheme.

 \hookrightarrow Certificate size is the cost of certification.

- ► Additional memory.
- Additional messages.
- More probability of corruption.

Certificate size

- ► [Naor-Stockmeyer 93] : LCL problems.
- ► [Korman, Kutten, Peleg 05] : formalization, Ω(log n) for spanning tree, universal O(n²) scheme.
- [Korman, Kutten 06] $\Omega(\log^2 n)$ for minimum spanning tree.
- ► [Göös, Suomela 11] LogLCP, general model.

More previous works

- Impact of the identifier model [Fraigniaud, Hirvonen, Suomela 15]
- Randomization [Fraigniaud, Göös, Korman, Parter, Peleg 14], [Baruch, Fraigniaud, Patt-Shamir 15], [F., Fraigniaud 15]
- ► Message diversity [Patt-Shamir, Perry 17]
- ► Approximation [Censor-Hillel, Paz, Perry 17]
- ► Different decision mechanisms [Arfaoui, Fraigniaud, Pelc 13]
- ► Randomized interactivity [Kol, Oshman, Saxena 18]
- \hookrightarrow See Survey of distributed decision with P. Fraigniaud.

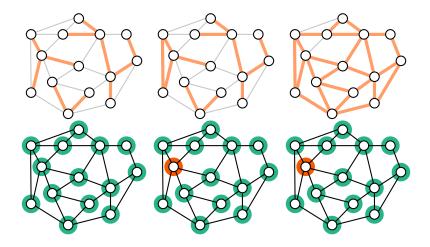
This thesis

Error-sensitivity Uniformity Redundancy Interactivity

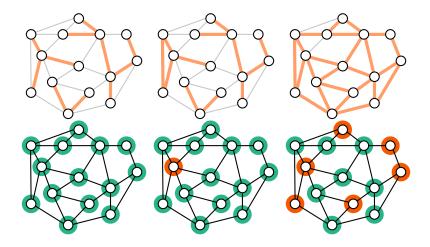
Part I Error-sensitivity

Error-sensitive proof-labeling scheme with P. Fraigniaud. DISC 2017.

Motivation



Motivation



Formalization

Definition Distance((G,x), \mathcal{L}) = the minimum number of (node) inputs to change to get a configuration in \mathcal{L} .

Definition : A certification scheme for a language \mathcal{L} is *error-sensitive* if for any configuration, for any certificate assignment :

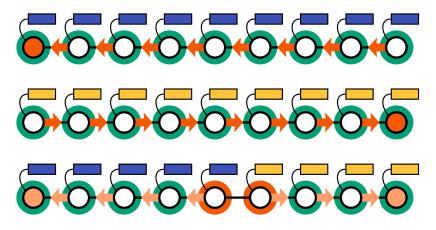
 $#(Rejecting nodes) \ge Distance((G, x), \mathcal{L})$

Not every language is sensitive

Theorem : The language of oriented paths is not error-sensitive.

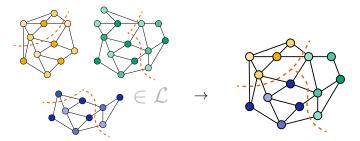
Not every language is sensitive

Theorem : The language of oriented paths is not error-sensitive.



Characterization

Definition : Hybrid.



Definition : \mathcal{L} is locally stable if for any hybrid (G, h) : $d((G, h), \mathcal{L}) \leq \#\{\text{Border nodes}\}$

Theorem : A language is error-sensitive iff it is locally stable.

Corollaries and certificate size

Corollary : The language of oriented paths is not error-sensitive.

Corollary : Spanning tree and minimum spanning tree are error-sensitive.

Theorem :

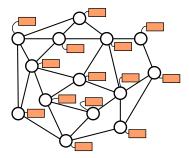
Spanning tree and minimum spanning tree have a error-sensitive schemes with certificate size $O(\log n)$ and $O(\log^2 n)$.

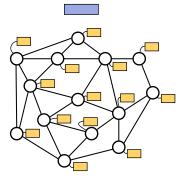
Open question : Can error-sensitivity require larger certificates (for locally stable languages) ?

Part II **Uniformity**

Local verification of global proofs with J. Hirvonen. DISC 2018.

Motivation





Uniformity

Definition : The *uniformity* of a language is the ratio :

 $\frac{\sum_{v} |c(v)| \text{ (Classic scheme)}}{\sum_{v} |c_{Loc}(v)| + |c_{Glob}| \text{ (Mixed scheme)}}$

Theorem : The uniformity is between 1 and n. **Definition :** Two languages :

- ► AMOS : configurations where *at most* one node is selected.
- ► ALOS : configurations where *at least* one node is selected.

Theorem :

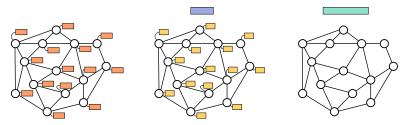
- AMOS has uniformity n.
- ALOS has uniformity $\Theta(1)$.

More results

Corollaries : The uniformity of spanning trees, non-bipartiteness, leader election is $\Theta(1)$.

Theorem : Minimum spanning tree has uniformity $\Theta(\log n)$.

Open question : Can purely global proofs be less efficient than purely local proofs ?



Part III Redundancy

Redundancy in distributed proofs with P. Fraigniaud, J. Hirvonen, A. Paz and M. Perry. DISC 2018.

Distance-*r* certification

- ► Trade-off between certificate size and radius.
- ► [Korman, Kutten, Masuzawa 11] (log n, log n)-scheme for minimum spanning tree.
- [Ostrovsky, Perry, Rosenbaum 17]
 Linear scaling for universal scheme and spanning trees.

Scaling

Definition : The *scaling* of a language is a function f(r) s.t. :

$$proof-size(r) = \frac{proof-size(r = 1)}{f(r)}$$

We witness two main scenarios :

- Linear scaling : f(r) is $\Theta(r)$.
- ► Maximum scaling : f(r) is Θ(b(r)), b(r)= minimum number of nodes in a ball of radius r.

Theorems

Theorem :

- ► Optimal uniform schemes imply a maximum scaling.
- Minimum spanning tree has a linear scaling.
- ► In paths, cycles, grids, torii, any language has a linear scaling.

Open question : does every language scales linearly?

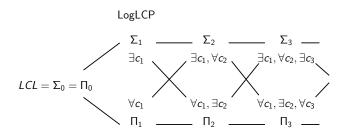
Part IV Interactivity

A hierarchy of local decision with P. Fraigniaud and J. Hirvonen. ICALP 2016.

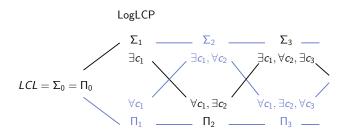
Local hierarchy

- ► LCL [Naor-Stockmeyer 93] : $\mathcal{L} \in P$: \exists local algorithm \mathcal{A} : $x \in \mathcal{L} \leftrightarrow \mathcal{A}(x) = \text{accept.}$
- ► LogLCP [Göös-Suomela 11] : $\mathcal{L} \in P$: \exists local algorithm \mathcal{A} : $x \in \mathcal{L} \leftrightarrow \exists c$, log-size , $\mathcal{A}(x, c) = \text{accept.}$
- ► LH :

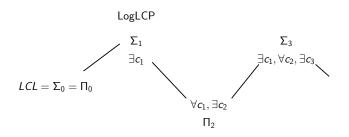
 $\mathcal{L} \in P : \exists$ local algorithm $\mathcal{A} : x \in \mathcal{L} \leftrightarrow \exists c_1, \forall c_2, \exists c_3... \text{ log-size } \mathcal{A}(x, c_1, c_2, c_3, ...) = accept.$



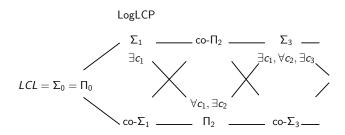
- Collapse of classes.
- But complement classes.
- $MST \in co-\Sigma_1 \subseteq \Pi_2 \text{ and } ISO \in co-\Pi_2 \subseteq \Sigma_3.$
- ► No lower bound technique for higher levels.



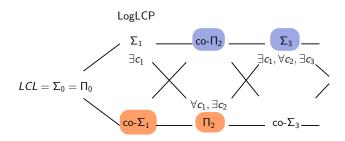
- Collapse of classes.
- But complement classes.
- $MST \in co-\Sigma_1 \subseteq \Pi_2$ and $ISO \in co-\Pi_2 \subseteq \Sigma_3$.
- ► No lower bound technique for higher levels.



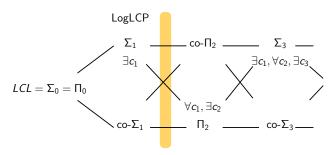
- Collapse of classes.
- But complement classes.
- $MST \in co-\Sigma_1 \subseteq \Pi_2$ and $ISO \in co-\Pi_2 \subseteq \Sigma_3$.
- ► No lower bound technique for higher levels.



- Collapse of classes.
- But complement classes.
- $MST \in co-\Sigma_1 \subseteq \Pi_2$ and $ISO \in co-\Pi_2 \subseteq \Sigma_3$.
- ► No lower bound technique for higher levels.



- ► Collapse of classes.
- But complement classes.
- $MST \in co-\Sigma_1 \subseteq \Pi_2 \text{ and } ISO \in co-\Pi_2 \subseteq \Sigma_3.$
- ► No lower bound technique for higher levels.



- ► Collapse of classes.
- But complement classes.
- $MST \in co-\Sigma_1 \subseteq \Pi_2 \text{ and } ISO \in co-\Pi_2 \subseteq \Sigma_3.$
- ► No lower bound technique for higher levels.

Perspectives

- Solve the open problems on the specific topics
- Applications
 - Message complexity
 - ► Fault-tolerance
 - Dynamic setting
- A decomposition theorem ?
- Use in other domains :
 - ► Graph theory
 - Property testing.