
Local certification
in distributed computing

Error-sensitivity, uniformity, redundancy,

and interactivity

Laurent Feuilloley

PhD Defense

Supervised by Pierre Fraigniaud
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Distributed network computing
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Distributed network computing
◮ n machines, interacting during computation, no coordinator.

◮ Linked together by communication channels.

◮ Network represented by a graph.
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Distributed network computing
◮ n machines, interacting during computation, no coordinator.

◮ Linked together by communication channels.

◮ Network represented by a graph.

LOCAL model [Linial 92, Naor-Stockmeyer 93, Peleg 00]

◮ Synchronous message-passing.

◮ No constraint on computational power and message size.

◮ Identifiers on O(log n) bits.

◮ Equivalent to a model with views.
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Local decision

Local decision : checking the status of the network.
[Itkis-Levin 94, Awerbuch-Patt-Shamir-Varghese 91,
Afek-Kutten-Yung 97].

◮ Motivated by fault-tolerance, in particular self-stabilizing
algorithms [Dolev 00].

◮ A (more) universal framework [Fraigniaud, Korman, Peleg 11].

◮ Distributed complexity theory.
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Formalization
Definitions :

◮ A configuration is a pair (G , x), where G is the graph, and x

an input assignment.
◮ A language is set of configurations.

The decision rule :

◮ Based on its 1-view, every node makes one (local) decision :
accept or reject.

◮ The configuration is (globally) accepted if and only if it is
(locally) accepted everywhere.
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Local certification

Additional information at the nodes, certifying the configuration.
For spanning tree : distances and root-ID.
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Formalization

Definition [Korman-Kutten-Peleg 05] : A certificate (or proof)
assignment is a function c : V → {0, 1}∗, given by a prover.
A certification scheme is a couple (prover,verifier).

Correctness : A certification scheme is correct if, for all (G , x) :

(G , x) ∈ L ⇔ there exists c , s.t. all nodes accept

Like in NP.

7



Spanning tree

Theorem [Itkis-Levin 94] : The scheme with distances and root-ID
is a correct certification scheme.
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Certificate size

Definition : The certificate size of a language is the minimum
certificate size of correct certification scheme.

→֒ Certificate size is the cost of certification.

◮ Additional memory.

◮ Additional messages.

◮ More probability of corruption.
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Certificate size

0 Θ(log n) Θ(log2 n) Θ(n2)

◮ [Naor-Stockmeyer 93] : LCL problems.

◮ [Korman, Kutten, Peleg 05] : formalization, Ω(log n) for
spanning tree, universal O(n2) scheme.

◮ [Korman, Kutten 06] Ω(log2 n) for minimum spanning tree.

◮ [Göös, Suomela 11] LogLCP, general model.
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More previous works

◮ Impact of the identifier model [Fraigniaud, Hirvonen, Suomela
15]

◮ Randomization [Fraigniaud, Göös, Korman, Parter, Peleg 14],
[Baruch, Fraigniaud, Patt-Shamir 15], [F., Fraigniaud 15]

◮ Message diversity [Patt-Shamir, Perry 17]

◮ Approximation [Censor-Hillel, Paz, Perry 17]

◮ Different decision mechanisms [Arfaoui, Fraigniaud, Pelc 13]

◮ Randomized interactivity [Kol, Oshman, Saxena 18]

→֒ See Survey of distributed decision with P. Fraigniaud.
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This thesis

Error-sensitivity

Uniformity

Redundancy

Interactivity
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Part I

Error-sensitivity
Error-sensitive proof-labeling scheme

with P. Fraigniaud. DISC 2017.
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Motivation
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Formalization

Definition Distance((G,x), L) = the minimum number of (node)
inputs to change to get a configuration in L.

Definition : A certification scheme for a language L is
error-sensitive if for any configuration, for any certificate
assignment :

#(Rejecting nodes) ≥ Distance((G , x),L)
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Not every language is sensitive

Theorem : The language of oriented paths is not error-sensitive.
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Not every language is sensitive

Theorem : The language of oriented paths is not error-sensitive.
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Characterization

Definition : Hybrid.

∈ L →

Definition : L is locally stable if for any hybrid (G , h) :

d((G , h),L) ≤ #{Border nodes}

Theorem : A language is error-sensitive iff it is locally stable.
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Corollaries and certificate size

Corollary : The language of oriented paths is not error-sensitive.

Corollary : Spanning tree and minimum spanning tree are
error-sensitive.

Theorem :

Spanning tree and minimum spanning tree have a error-sensitive
schemes with certificate size O(log n) and O(log2 n).

Open question : Can error-sensitivity require larger certificates
(for locally stable languages) ?
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Part II

Uniformity
Local verification of global proofs

with J. Hirvonen. DISC 2018.
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Uniformity

Definition : The uniformity of a language is the ratio :

∑
v
|c(v)| (Classic scheme)

∑
v
|cLoc (v)|+ |cGlob| (Mixed scheme)

Theorem : The uniformity is between 1 and n.
Definition : Two languages :

◮ AMOS : configurations where at most one node is selected.

◮ ALOS : configurations where at least one node is selected.

Theorem :

◮ AMOS has uniformity n.

◮ ALOS has uniformity Θ(1).
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More results

Corollaries : The uniformity of spanning trees, non-bipartiteness,
leader election is Θ(1).

Theorem : Minimum spanning tree has uniformity Θ(log n).

Open question : Can purely global proofs be less efficient than
purely local proofs ?
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Part III

Redundancy
Redundancy in distributed proofs

with P. Fraigniaud, J. Hirvonen, A. Paz and M. Perry. DISC 2018.
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Distance-r certification

◮ Trade-off between certificate size and radius.

◮ [Korman, Kutten, Masuzawa 11]
(log n, log n)-scheme for minimum spanning tree.

◮ [Ostrovsky, Perry, Rosenbaum 17]
Linear scaling for universal scheme and spanning trees.
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Scaling

Definition : The scaling of a language is a function f (r) s.t. :

proof-size(r) =
proof-size(r = 1)

f (r)

We witness two main scenarios :

◮ Linear scaling : f (r) is Θ(r).

◮ Maximum scaling : f (r) is Θ(b(r)),
b(r)= minimum number of nodes in a ball of radius r .
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Theorems

Theorem :

◮ Optimal uniform schemes imply a maximum scaling.

◮ Minimum spanning tree has a linear scaling.

◮ In paths, cycles, grids, torii, any language has a linear scaling.

Open question : does every language scales linearly ?
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Part IV

Interactivity
A hierarchy of local decision

with P. Fraigniaud and J. Hirvonen. ICALP 2016.
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Local hierarchy

◮ LCL [Naor-Stockmeyer 93] :
L ∈ P : ∃ local algorithm A :
x ∈ L ↔ A(x) = accept.

◮ LogLCP [Göös-Suomela 11] :
L ∈ P : ∃ local algorithm A :
x ∈ L ↔ ∃c , log-size ,A(x , c) = accept.

◮ LH :
L ∈ P : ∃ local algorithm A :
x ∈ L ↔ ∃c1,∀c2,∃c3... log-size A(x , c1, c2, c3, ...) = accept.
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Local hierarchy structure

LCL = Σ0 = Π0

Σ1

Π1

Σ2

Π2

Σ3

Π3

LogLCP

∃c1

∀c1

∃c1, ∀c2

∀c1, ∃c2

∃c1, ∀c2, ∃c3

∀c1, ∃c2, ∀c3

◮ Collapse of classes.

◮ But complement classes.

◮ MST∈ co-Σ1 ⊆ Π2 and ISO∈ co-Π2 ⊆ Σ3.

◮ No lower bound technique for higher levels.

Open problems : Is the hierarchy infinite ?
26
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Perspectives

◮ Solve the open problems on the specific topics

◮ Applications
◮ Message complexity
◮ Fault-tolerance
◮ Dynamic setting

◮ A decomposition theorem ?

◮ Use in other domains :
◮ Graph theory
◮ Property testing.
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