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The structure of graph colorings

With an adjacency:
single-vertex recoloring

Reconfiguration graph →



Key question # 1: Reachability/Connectivity

Setting:
For a graph G and c colors.

Algorithmic question:
Given two c-colorings of G , can I
reach one from the other?

Structural question:
Is the reconfiguration graph
connected?



Key question # 2: Shortest path/Diameter

Setting:
For a graph G and c colors.

Algorithmic question:
Given two colorings, how fast can I
go from one to the other?

Structural question:
What is the diameter of the reconfig-
uration graph?



Algorithmic motivations

A generic framework:
Makes sense for any set of configura-
tions and adjacency.

Motivations:

▶ Sampling via random walks

▶ Enumeration via local
modifications

▶ Optimization algorithms visiting
solutions (e.g. simplex)

▶ Updating a solution through
safe local moves.
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Our “theorem”

Consider a graph G

with n nodes and maximum degree ∆.

The diameter of the reconfiguration graph

of (∆ + 1)-colorings of G is O∆(n).



Fix #1: Frozen colorings

▶ A vertex is frozen if it cannot change
color. A coloring is frozen if all nodes
are frozen. (Otherwise “non-frozen”.)

▶ Some ∆ + 1 colorings are frozen.

→ Isolated vertices in the
reconfiguration graph.

▶ Previous work theorem: Non-frozen
colorings form a giant connected
component, of diameter O(n2).

[A Reconfigurations Analogue of Brooks’ Theorem
and its Consequences, Feghali, Johnson, Paulusma, 2016]



Fix #2: ∆ = 2 is special

▶ For ∆ = 2, our bound cannot hold:
the reconfiguration graph can have
diameter Ω(n2).

▶ Cute lower bound.

[Reconfiguration graphs for vertex
colourings of chordal and chordal
bipartite graphs, Bonamy, Johnson,
Lignos, Patel, Paulusma, 2014]
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Our theorem

Consider a graph G

with n nodes and maximum degree ∆ ≥ 3.

The diameter of the reconfiguration graph

of non-frozen (∆ + 1)-colorings of G is O∆(n).



Proof idea #1: Degeneracy by local warming

Classic degeneracy argument:

▶ A node of degree < ∆ is always
non-frozen.

▶ → Easy to remove/add it.

▶ The argument can be used
recursively.
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Proof idea #1: Degeneracy by local warming

▶ Given a non-frozen node, need a
buffer of constant diameter.

▶ Can simulate the degeneracy
argument.

▶ Duplicate non-frozeness on the
boundary of the buffer.
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Proof idea #2: Parallelize

▶ Given a non-frozen vertex, we
can unfreeze any well-spread set
of vertices.

▶ Partition the graph into zones
centered around the non-frozen
vertices and their buffers.

▶ From there, the recoloring can
be computed in parallel,
efficiently in a distributed way.
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Back to the result and open questions

Theorem: Consider a graph G

with n nodes and maximum degree ∆ ≥ 3.

The diameter of the reconfiguration graph
of non-frozen (∆ + 1)-colorings of G is O∆(n).

Related open questions: Complexity in ∆, lower bounds,
mixing time, palette size depending on the degeneracy,
applying the distributed lens to other graph problems.


