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The structure of graph colorings

With an adjacency:
single-vertex recoloring
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Key question # 1: Reachability/Connectivity
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Setting:
For a graph G and c colors. / ‘\ / I \
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Algorithmic question: l / \\ ‘
Given two c-colorings of G, can | > .
reach one from the other? K \\ / ‘i
Structural question: T'_* 84 a v

Is the reconfiguration graph \ / \
connected? \ \



Key question # 2: Shortest path/Diameter

Setting: / \
For a graph G and c colors. ‘\ / I
a &
Algorithmic question: l / \\ ‘
Given two colorings, how fast can | > .
go from one to the other? -\‘ \ / ‘i
o

Structural question: ?'_* ?'_‘

What is the diameter of the reconfig- \ / \ \
uration graph? \



Algorithmic motivations

A generic framework: n__ I:q —_—

Makes sense for any set of configura-
tions and adjacency.

Motivations: rr /
» Sampling via random walks '__‘
» Enumeration via local
modifications \
» Optimization algorithms visiting Y'_‘ 1__‘
solutions (e.g. simplex) at \
» Updating a solution through
safe local moves.
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Our “theorem”

Consider a graph G

with n nodes and maximum degree A.

The diameter of the reconfiguration graph

of (A + 1)-colorings of G is Oa(n).



Fix #1: Frozen colorings

» A vertex is frozen if it cannot change
color. A coloring is frozen if all nodes
are frozen. (Otherwise “non-frozen”.)

» Some A + 1 colorings are frozen.

— Isolated vertices in the
reconfiguration graph.

» Previous work theorem: Non-frozen
colorings form a giant connected
component, of diameter O(n?).

[A Reconfigurations Analogue of Brooks' Theorem
and its Consequences, Feghali, Johnson, Paulusma, 2016]



Fix #2: A =2 is special

» For A = 2, our bound cannot hold:

the reconfiguration graph can have
diameter Q(n?).

» Cute lower bound.

[Reconfiguration graphs for vertex
colourings of chordal and chordal
bipartite graphs, Bonamy, Johnson,
Lignos, Patel, Paulusma, 2014]
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Our theorem

Consider a graph G

with n nodes and maximum degree A > 3.

The diameter of the reconfiguration graph
of non-frozen (A + 1)-colorings of G is Oa(n).



Proof idea #1: Degeneracy by local warming

N=3 Rifelfe- ] ]

Classic degeneracy argument:

> A node of degree < A is always
non-frozen.

» — Easy to remove/add it.

» The argument can be used
recursively.
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Proof idea #1: Degeneracy by local warming

» Given a non-frozen node, need a
buffer of constant diameter.

» Can simulate the degeneracy
argument.

» Duplicate non-frozeness on the
boundary of the buffer.
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Proof idea #2: Parallelize

» Given a non-frozen vertex, we
can unfreeze any well-spread set
of vertices.

» Partition the graph into zones
centered around the non-frozen
vertices and their buffers.

» From there, the recoloring can

be computed in parallel,
efficiently in a distributed way.
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Back to the result and open questions

Theorem: Consider a graph G
with n nodes and maximum degree A > 3.

The diameter of the reconfiguration graph
of non-frozen (A + 1)-colorings of G is Oa(n).

Related open questions: Complexity in A, lower bounds,
mixing time, palette size depending on the degeneracy,
applying the distributed lens to other graph problems.



