
Compact local certification

Laurent Feuilloley

CNRS and University of Lyon 1

Distributed Algorithms: past, present & future trends

June 13, 2023

Based on joint (and disjoint) work with Nicolas Bousquet, Pierre
Fraigniaud, Pedro Montealegre, Théo Pierron, Eric Rémila, Ivan

Rapaport, Ioan Todinca...

1



A typical theorem shape

In some distributed computing setting,

we can efficiently solve

the tasks of some type

in systems with nice enough properties.

2



Setting: Origins

The origin of our setting: the state model of self-stabilization.

Very roughly:

I A network represented as a graph

I Every node has a local memory (and a unique identifier)

I The computation is performed by local steps: read the
memory of your neighbors, and update your memory.

The main challenge is fault-tolerance: the algorithm should to
converge to a correct configuration in spite of arbitrary changes to
the memories (when given enough time to recover).

3



Setting: spanning tree example

Spanning tree:

Set of pointers such that:

I 1 out-pointer per node.

I No cycle.

I Connected.

4



Setting: spanning tree example

Spanning tree:

Set of pointers such that:

I 1 out-pointer per node.

I No cycle.

I Connected.

5



Setting: spanning tree example

Spanning tree:

Set of pointers such that:

I 1 out-pointer per node.

I No cycle.

I Connected.

6



Setting: checking correctness
Our setting is “stop-or-continue self-stabilization”:

I If the configuration is correct, no update should be performed
anymore.

I If the configuration is not correct, at least one node wants to
take a step.

Not trivial: the output does not suffice.

7



Setting: local certification

Key idea: keep additional info in memory (represented by a label).

Label:

I Distance to the root.

I The ID of the root.

Sanity check:

I The distances locally
make sense.

I Same “ID of the root”.

I The root is the root.

8



Setting: local certification

Key idea: keep additional info in memory (represented by a label).

Label:

I Distance to the root.

I The ID of the root.

Sanity check:

I The distances locally
make sense.

I Same “ID of the root”.

I The root is the root.

9



Setting: local certification

Key idea: keep additional info in memory (represented by a label).

Label:

I Distance to the root.

I The ID of the root.

Sanity check:

I The distances locally
make sense.

I Same “ID of the root”.

I The root is the root.

10



Setting: local certification

Key idea: keep additional info in memory (represented by a label).

Label:

I Distance to the root.

I The ID of the root.

Sanity check:

I The distances locally
make sense.

I Same “ID of the root”.

I The root is the root.

11



Setting: local certification
We have the two following properties → it is a local certification.

Yes For every correct configuration
there exists a label assignment such that
the sanity check accepts at every node.

No For every incorrect configuration,
for all label assignments,
the sanity check rejects in at least one node.

12



A typical theorem shape

In local certification,

we can efficiently solve

the tasks of some type

in systems with nice enough properties.

13



Efficiency: certificate size

The time/locality is already restricted: one communication round
with the direct neighbors. → Focus on space.

For spanning tree certification: labels of size O(log n) per node.
And this is optimal.

14



Efficiency: compact certification

Compact certification: certificates of size O((poly) log n).

Can be achieved for: planarity, tree problems, approximation of
combinatorial problems.

But not for everything. Sometimes we need to use up to Θ(n2)

15



A typical theorem shape

In local certification,

we can certify compactly

the tasks of some type

in systems with nice enough properties.

16



Restricting tasks: logic on graphs
Ways to classify tasks: CSPs/LPs, using substructures...

Here → logic on graphs.

First-order (FO) logic on graphs: basically classic formula shape
but with a predicate for edges (denoted ∼ in this talk).

Example: diameter at most 3:

∀x , ∀y ,∃u, ∃v , (x ∼ u ∧ u ∼ v ∧ v ∼ y)

17



Restricting tasks: MSO

FO is too weak for many interesting properties. :(

MSO is a popular extension: can quantify on sets of vertices/edges.

Example: connectivity

∀S ⊆ V , (S 6= ∅, S 6= V )⇒ ∃x /∈ S ,∃y ∈ S , x ∼ y .

18



A typical theorem shape

In local certification,

we can certify compactly

all MSO properties

in systems with nice enough properties.

19



Restricting the system: necessary?
We do have to restrict the graph class.

→ “Diameter ≤ k” has an FO formula and requires Ω̃(n) bits in
general graphs.

The lower bound needs arbitrarily complicated structure.

20



Restricting the system: bounding
graph parameters

Inspiration → Courcelle’s theorem: Any MSO property can be
checked in linear time in graphs of bounded treewidth.

21



Meta-theorem(s)

In local certification,

we can certify compactly

all MSO properties

graphs of bounded treedepth/treewidth.

22



Restricting the system only?

At least some task restriction is necessary.

→ “Symmetry” requires Ω(n) bits even on trees.

No MSO formula can express symmetry (we “need” to quantify on
a mapping function, and not simply on a set).

23



The proof in a nutshell

Step 1: Certify the underlying structure that captures the
parameter (embedding in extended tree / tree decomposition)

.

24



The proof in a nutshell

Step 2 (for treedepth only): Provide and certify a kernel.

.

Step 3 (for treedepth only): Let the nodes check the MSO
property on this model.

25



Conclusion
In local certification,

we can certify compactly

all MSO properties

graphs of bounded treedepth/treewidth.

Open questions:

I More general graph parameters?

I Minor-free graphs?

I Other meta-theorems approaches?

I Consequences in self-stabilization?
26


