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What can be certified compactly?

Compact local certification of MSO properties in
tree-like graphs

Unofficial subsubtitle:

Distributed computing on graphs
meets model checking

meets parameterized complexity

Disclaimer: citations are at the end, send me emails if you want
pointers.
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Distributed computing motivation

A model of distributed computing:
I Network represented by a graph.
I Computation step: a vertex accesses the state of its neighbors

and updates its state.

I There are faults: some set of states can be modified arbitrarily.
I Goal: converge to a correct solution (eg a spanning tree).
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Distributed computing motivation

A simpler problem: Check correctness.
If not correct: a node should raise an alarm.

Examples: 3-coloring and spanning tree

Problem: Acyclicity is a global property that cannot be checked
locally.
Solution: Keep additional information to certify the correctness.
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Moving towards graphs

Now: checking that the graph belongs to a given class.

Let C be a class of connected graphs.

A local decision algorithm: a mapping from the neighborhoods
at distance d (d = 1 here) to accept or reject.

Local recognition of C: A local decision algorithm such that:

I If G ∈ C then all the vertices accept.

I If G /∈ C then at least one vertex rejects.

Doable: Locally recognize cycles. (Check degree=2)
Not doable: Locally recognize paths.
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Local certification (intuition)

C = trees

Imagine the graph comes with labels, that are supposed to be the
distances to a root.

A local decision algorithm: accept iff the distances are
consistent.

Fact: there exists a labeling that is consistent everywhere iff the
graph is a tree.
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Local certification (definition)

A local certification (of size k) for a class C is
a local decision algorithm such that :

1. For G ∈ C, there exists certificate assignment (of k-bit
labels) that makes all vertices accept.

2. For G /∈ C, for any certificate assignment (of k-bit labels),
at least one vertex rejects.

Several points of view on the notion:

I Fault-tolerance, self-stabilization.

I A distributed analogue of NP.

I Extension to the space of labeled graphs s.t.: the checking is
local in this space, and the projection to unlabeled is C.
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Can we certify any graph class?

Question: Take a graph class C (i.e. an infinite set of graphs).
Does there exists a local certification?

Answer: Yes (with the help of identifiers). Size: Θ(n2).
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Optimal certificate size

Measure of quality: the size of the certificates.

Example: for trees,

I the optimal certificate size for trees is ≥ 1, and ≤ O(n2),

I the distance labeling gives O(log n)

I O(log n) is actually optimal

→ The (optimal) certificate size is a measure of locality.
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Landscape of certificate sizes

Compact certification = O(log n) certificates (or polylog(n)):

I k-colorable graphs: O(log k)

I paths, trees: Θ(log n)

I planar, bounded-genus: Θ(log n)

Terribly non-compact certification:

I diameter ≤ 3: Θ̃(n)

I non k-colorable: Θ̃(n2)

I symmetric graphs: Θ(n2) (and Θ̃(n) for symmetric trees.)

Intriguing open question: Does every minor-closed class admit a
compact certification?
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What about meta-theorems?

Courcelle’s theorem: Any MSO property can be decided in linear
time when the treewidth of the graph is bounded.

MSO properties: Logical formula built with:
(u, v) ∈ E ,∃u, ∀u, ∃S ⊂ V , ∀S ⊂ V , and usual connectors.

Theorem we are looking for: Any property XXX can be certified
with O(log n) labels, when the YYY of the graph is bounded.

Note: restricting both the logic and the structure is also necessary
for compact certification:

I Diameter > 3 is in FO, but certificate size is Ω̃(n)

I Symmetric trees are... trees, but certificate size is Ω̃(n)
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On trees

Theorem : Any MSO property can be certified with O(1) bits in
trees.

Technique on edge-labeled oriented paths (= words):

I Known theorem: MSO on path = regular languages

I Use the automaton states as labels.
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On bounded-treedepth

Theorem : Any MSO property can be certified with O(log n) bits
in graphs of bounded treedepth.
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Other results and open questions

I An analogue for treewidth has been proved with certificates of
size O(log2 n) bits. Is it optimal?

I Other trade-offs between expressivity/structure/certification?

I Certifying all minor-closed classes in O(log n)?

I What about completely different type of classes, like
unit-disks?
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