
Silent MST approximation

for tiny memory

Lélia Blin, Swan Dubois and Laurent Feuilloley

SSS 2020 · 18th Novembrer 2020 · Virtual



The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.



The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.



The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.



The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.



The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.



The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.



Computation in the state model

I Local view, modeling messages.

I Local ”if” rules, activated/non-activated.

I Adversary scheduler : chooses the (active) nodes taking steps.



Computation in the state model

I Local view, modeling messages.

I Local ”if” rules, activated/non-activated.

I Adversary scheduler : chooses the (active) nodes taking steps.



Computation in the state model

I Local view, modeling messages.

I Local ”if” rules, activated/non-activated.

I Adversary scheduler : chooses the (active) nodes taking steps.



Computation in the state model

I Local view, modeling messages.

I Local ”if” rules, activated/non-activated.

I Adversary scheduler : chooses the (active) nodes taking steps.



Computation in the state model

I Local view, modeling messages.

I Local ”if” rules, activated/non-activated.

I Adversary scheduler : chooses the (active) nodes taking steps.



Silent self-stabilization

I Fault-free setting vs. self-stabilizing setting

I Silent self-stabilization : at the end, no activated nodes

I The output is not enough (for most tasks).

I Certification has been studied on its own (Proof-labeling
schemes Korman, Kutten and Peleg)



Silent self-stabilization

I Fault-free setting vs. self-stabilizing setting

I Silent self-stabilization : at the end, no activated nodes

I The output is not enough (for most tasks).

I Certification has been studied on its own (Proof-labeling
schemes Korman, Kutten and Peleg)



Silent self-stabilization

I Fault-free setting vs. self-stabilizing setting

I Silent self-stabilization : at the end, no activated nodes

I The output is not enough (for most tasks).

I Certification has been studied on its own (Proof-labeling
schemes Korman, Kutten and Peleg)



Silent self-stabilization
I Fault-free setting vs. self-stabilizing setting

I Silent self-stabilization : at the end, no activated nodes

I The output is not enough (for most tasks).

I Certification has been studied on its own (Proof-labeling
schemes Korman, Kutten and Peleg)



Silent self-stabilization

I Fault-free setting vs. self-stabilizing setting

I Silent self-stabilization : at the end, no activated nodes

I The output is not enough (for most tasks).

I Certification has been studied on its own (Proof-labeling
schemes Korman, Kutten and Peleg)



Certification size and MST

I Focus on the space (keeping polynomial time).

I → minimize size of certification and do not use more space.

Theorem [Korman, Kutten] : The optimal certification size for
minimum spanning tree is Θ(log n × s), when weights are encoded
on s bits.
→ For weights in a poly(n) range s = log n, and the optimal size is
Θ(log2 n).



Our results

Theorem 1 : A (full) self-stabilizing MST algorithm with optimal
space O(log n × s).

Proof : First : build a non-certified MST. Second : build the
optimal certification on top.

What if we cannot afford log2 n bits ? Can we still get something
useful ? → Yes with approximation.

Theorem 2 : We can parameterize the algorithm such that there
is tradeoff between space complexity and quality of the solution.



Our results

Theorem 1 : A (full) self-stabilizing MST algorithm with optimal
space O(log n × s).

Proof : First : build a non-certified MST. Second : build the
optimal certification on top.

What if we cannot afford log2 n bits ? Can we still get something
useful ? → Yes with approximation.

Theorem 2 : We can parameterize the algorithm such that there
is tradeoff between space complexity and quality of the solution.



Our results

Theorem 1 : A (full) self-stabilizing MST algorithm with optimal
space O(log n × s).

Proof : First : build a non-certified MST. Second : build the
optimal certification on top.

What if we cannot afford log2 n bits ? Can we still get something
useful ? → Yes with approximation.

Theorem 2 : We can parameterize the algorithm such that there
is tradeoff between space complexity and quality of the solution.



Approximation and trade-off

Approximation in certification : Censor-Hillel, Paz and Perry
(2017), and Emek and Gil (2020).



Approximation and trade-off

Approximation in certification : Censor-Hillel, Paz and Perry
(2017), and Emek and Gil (2020).



Example : 2-approximation
I Round every weight to the next power of 2.

I An MST on these new weights is a 2 -approximation.

I Weights can be encoded in a compact way : 2p encoded as p.

I This reduces the weight exponentially log n→ log log n.

I Using Theorem 1, we get a 2-approx in space log n log log n.



Example : 2-approximation
I Round every weight to the next power of 2.

I An MST on these new weights is a 2 -approximation.

I Weights can be encoded in a compact way : 2p encoded as p.

I This reduces the weight exponentially log n→ log log n.

I Using Theorem 1, we get a 2-approx in space log n log log n.



Example : 2-approximation
I Round every weight to the next power of 2.

I An MST on these new weights is a 2 -approximation.

I Weights can be encoded in a compact way : 2p encoded as p.

I This reduces the weight exponentially log n→ log log n.

I Using Theorem 1, we get a 2-approx in space log n log log n.



Example : 2-approximation
I Round every weight to the next power of 2.

I An MST on these new weights is a 2 -approximation.

I Weights can be encoded in a compact way : 2p encoded as p.

I This reduces the weight exponentially log n→ log log n.

I Using Theorem 1, we get a 2-approx in space log n log log n.



To finish : build vs certify



To finish : build vs certify



To finish : build vs certify



Thanks for your attention !


