Silent MST approximation
for tiny memory

Lélia Blin, Swan Dubois and Laurent Feuilloley

The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

STATE

The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.

The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.

TASK:
COMPUTE A MiNiMuM SPAWiNG TREE

=

The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.

TASK:
COMPUTE A MiNiMuM SPAWiNG TREE

WEIEHTS

The state model and MST

1. Computation on a graph and every node has a state, with two
parts : the mutable and the non-mutable memory.

2. The non-mutable memory contains the ID, inputs and code.

3. At the end the mutable memory should contain the output.

TASK:
COMPUTE A MiNiMuM SPAWiNG TREE

PARENT
iV THE MST

WEIEHTS

Computation in the state model

Computation in the state model

» Local view, modeling messages.

Computation in the state model

» Local view, modeling messages.

» Local "if" rules, activated/non-activated.

CODE

RULEY : TF var1=23

ID is...
heighbors var?

then vard:= 0
RULEZ

Computation in the state model

» Local view, modeling messages.

» Local "if" rules, activated/non-activated.

CODE

RULEY : TF var1=23

ID is...
heighbors var?

then vard:= 0
RULEZ

Computation in the state model

» Local view, modeling messages.
» Local "if" rules, activated/non-activated.

» Adversary scheduler : chooses the (active) nodes taking steps.

CODE -
RULET: TF var1=23
gI‘D is ..
heighbors var1
%

then vard:= 0
RULEZ

Silent self-stabilization

» Fault-free setting vs. self-stabilizing setting

COMPUTATION
(aVaVaV]

Silent self-stabilization

» Fault-free setting vs. self-stabilizing setting

ARB COMPUTATION

Silent self-stabilization

» Fault-free setting vs. self-stabilizing setting

» Silent self-stabilization : at the end, no activated nodes

ARB COMPUTATION

Silent self-stabilization

» Fault-free setting vs. self-stabilizing setting
» Silent self-stabilization : at the end, no activated nodes

» The output is not enough (for most tasks).

Silent self-stabilization

» Fault-free setting vs. self-stabilizing setting
» Silent self-stabilization : at the end, no activated nodes
» The output is not enough (for most tasks).

» Certification has been studied on its own (Proof-labeling
schemes Korman, Kutten and Peleg)

ARB COMPUTATION

Certification size and MST

» Focus on the space (keeping polynomial time).

» — minimize size of certification and do not use more space.

| con, -
CERTIFICATIoN ‘ STACL

Theorem [Korman, Kutten] : The optimal certification size for
minimum spanning tree is ©(log n X s), when weights are encoded
on s bits.

— For weights in a poly(n) range s = log n, and the optimal size is
©(log? n).

Our results

Theorem 1 : A (full) self-stabilizing MST algorithm with optimal
space O(logn x s).

Proof : First : build a non-certified MST. Second : build the
optimal certification on top.

Our results

Theorem 1 : A (full) self-stabilizing MST algorithm with optimal
space O(logn x s).

Proof : First : build a non-certified MST. Second : build the

optimal certification on top.

What if we cannot afford log? n bits ? Can we still get something
useful 7 — Yes with approximation.

Our results

Theorem 1 : A (full) self-stabilizing MST algorithm with optimal
space O(logn x s).

Proof : First : build a non-certified MST. Second : build the

optimal certification on top.

What if we cannot afford log? n bits ? Can we still get something
useful 7 — Yes with approximation.

Theorem 2 : We can parameterize the algorithm such that there
is tradeoff between space complexity and quality of the solution.

Approximation and trade-off

SPACE
Offos n A PROA
(9) lmAgP“ %5%3“3 AVY TREE
/
of ?ogn) -
—
1 n ATPROX

ReTIo

Approximation and trade-off

SPACE
2.\)
6] h)
(foﬁ) %“Am)%%o l/AW TREE
o(logn)
—
1 n APPROX
RaTio

Approximation in certification : Censor-Hillel, Paz and Perry
(2017), and Emek and Gil (2020).

Example : 2-approximation

» Round every weight to the next power of 2.

Example : 2-approximation

» Round every weight to the next power of 2.

Example : 2-approximation

» Round every weight to the next power of 2.

» An MST on these new weights is a 2 -approximation.

Example : 2-approximation

v

Round every weight to the next power of 2.

v

An MST on these new weights is a 2 -approximation.

v

Weights can be encoded in a compact way : 2P encoded as p.

v

This reduces the weight exponentially log n — log log n.

v

Using Theorem 1, we get a 2-approx in space log nlog log n.

To finish : build vs certify

To finish : build vs certify

To finish : build vs certify

Thanks for your attention!

SPACE

g
>
M/
=
S
S
m =
SN
QED
N\
L
- T
= =
) mJ
SIS
o o]

