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Computation in the state model

» Local view, modeling messages.
» Local "if" rules, activated/non-activated.

» Adversary scheduler : chooses the (active) nodes taking steps.

CODE -
RULET: TF var1=23
gI‘D is ..
heighbors var1
%

then vard:= 0
RULEZ . .. ..
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Silent self-stabilization

» Fault-free setting vs. self-stabilizing setting
» Silent self-stabilization : at the end, no activated nodes
» The output is not enough (for most tasks).

» Certification has been studied on its own (Proof-labeling
schemes Korman, Kutten and Peleg)

ARB COMPUTATION




Certification size and MST

» Focus on the space (keeping polynomial time).

» — minimize size of certification and do not use more space.

| con, -
CERTIFICATIoN ‘ STACL

Theorem [Korman, Kutten] : The optimal certification size for
minimum spanning tree is ©(log n X s), when weights are encoded
on s bits.

— For weights in a poly(n) range s = log n, and the optimal size is
©(log? n).
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Theorem 2 : We can parameterize the algorithm such that there
is tradeoff between space complexity and quality of the solution.
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Approximation in certification : Censor-Hillel, Paz and Perry
(2017), and Emek and Gil (2020).
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Example : 2-approximation

v

Round every weight to the next power of 2.

v

An MST on these new weights is a 2 -approximation.

v

Weights can be encoded in a compact way : 2P encoded as p.

v

This reduces the weight exponentially log n — log log n.

v

Using Theorem 1, we get a 2-approx in space log nlog log n.
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Thanks for your attention!
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