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This talk

In this paper, we make progress on the following question:

Question: Does every graph class characterized by forbidden
minors have a compact local certification?

In this talk, I will:

I Explain local certification.

I Explain graph minors.

I Give a quick overview of our techniques.
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Local checking of the network

A scenario:

I The nodes of a network want to compute a X .
(X= matching, spanner, coloring, minimum spanning tree ...)

I They are supposed to be in a tree, and they have a fast local
algorithm that works only on trees.

I But there are faults, and the network might not be a tree.

→ How to check locally (= efficiently) that the network is a tree?

More generally: We are interested in checking locally that the
graph belongs to some given graph class C.
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Local checking of the network

Problem: Local checking is impossible for trees.

More generally: Except for a few graph classes (e.g. regular
graphs), it is impossible to locally check the structure.
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Local certification

Idea: Have a labeling of the nodes that certifies that the network
is in the class. This labeling can be checked locally.

Requirements: Given the local verification algorithm:

I For every graph in the class, there exists a labeling such that
the algorithm accepts.

I For every graph not in the class, for every labeling, the
algorithm rejects on at least one node.

Measure of performance: The size of the certificates. It is the
memory/message complexity, but also a measure of the locality of
the class.
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Certification of trees
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Certification of trees
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Certification of trees
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Compact certification
Known results:

I Every class can be certified with O(n2)-bit certificates.

I Trees can be certified with O(log n)-bit certificates.

I Planar graphs can be certified with O(log n)-bit certificates.

I Bounded-genus graphs can be certified with O(log n)-bit
certificates.

What these classes have in common:
They can be characterized by forbidden minors.
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Graph minors
Informal definition: A (large) graph G has a (small) graph H as
a minor, if H is hidden in G .

Formal definition: G has H as a minor, if one can transform G
into H by vertex and edge deletions, and edge contractions.
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Minor-free graphs

Given a graph H, one can define the class of the graphs that do
not have H as a minor.

Examples:
I Trees are exactly the triangle-minor-free graphs.
I Planar graphs are exactly the (K5,K3,3)-minor-free graphs.
I Graphs of genus x are exactly the (...)-minor-free graphs.
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Question and partial answer

→ Can we certify all minor-free classes with O(log n) bits ?

Weaker version:
Can we certify all minor-free classes with O(poly log n) bits ?

A reason to hope:
Properties that we know require large labels are non-hereditary.

A reason to doubt:
Such result would imply that these graphs can be constructively
described.

Our result:
For small minors, the answer (to the strong version) is positive.
(“Small” means |V | ≤ 4, or |V | ≤ 6 with additional assumptions.)
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Certification framework
For concreteness: focus on K4-minor-free graphs.

Theorem: A graph is K4-minor-free if and only if all its
2-connected components are series-parallel graphs.

Natural approach:

I Certify a decomposition in 2-connected components

I Certify that each component is series-parallel.
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Key tool: ear decompositions

(Plain) ear decomposition

Characterizes 2-connectivity.

Nested ear decomposition.

Characterizes 2-connected
series-parallel graphs.

(The dark blue paths are actually closed into cycles.)
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Key tool: ear decompositions

→ a challenge here: avoid congestion at connecting nodes.
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Beyond K4-minor-free graphs

I in C4-minor-free, the 2-CC are K2 and K3,

I in C5-minor-free, the 2-CC are complete bipartite and small
graphs

I in diamond-minor-free, the 2-CC are induced cycles.

I in K2,3-minor-free, the 2-CC are basically outerplanar.

I in K2,4-minor-free, we have use 3-connectivity and tricky
characterizations.

I ...

Our result:
For small minors, the answer (to the strong version) is positive.
(“Small” means |V | ≤ 4, or |V | ≤ 6 with additional assumptions.)
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Open questions

Still wide open:
Can we certify minor-free classes with O(log n) bits?

Fresh news!
For planar minors, a recent preprint proves a O(log2 n) bound.

The simplest open problem:
What about K5-free graphs?

About the decompositions:
Can we certify k-connectivity? What about lower bounds?
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