How local constraints influence network diameter and applications to LCL generalizations

Nicolas Bousquet

Laurent Feuilloley

Théo Pierron

CNRS, University of Lyon 1

OPODIS 2024 · Lucca · December 2024

Caterpillar example: A path, where vertex *i* gets *i* leaves.

Caterpillar example: A path, where vertex *i* gets *i* leaves.

Caterpillar example: A path, where vertex *i* gets *i* leaves.

Local verification algorithm:

For every v: Look at distance 2. If degree(v)=1, accept.

Otherwise, check: ≤ 2 non-leaf neighbors and degrees are consistent.

Caterpillar example: A path, where vertex *i* gets *i* leaves.

Local verification algorithm:

For every v: Look at distance 2. If degree(v) = 1 accent

If degree(v)=1, accept.

Otherwise, check: \leq 2 non-leaf neighbors and degrees are consistent.

Local checkers

Definition: A *local checker* at distance *d* is a distributed graph algorithm that:

- Takes a snapshot of its distance-d neighborhood.
- Outputs a binary decision: Accept or reject.

Definition: A local checker L accepts a graph G if all nodes output accept.

Definition: $\mathcal{G}(L)$: graphs accepted by *L*.

Definition: $\mathcal{G}(L)$: graphs accepted by L.

Definition: $\mathcal{G}(L)$: graphs accepted by *L*.

Definition: $\mathcal{G}(L)$: graphs accepted by L.

Definition: $\mathcal{G}(L)$: graphs accepted by L.

Definition: $\mathcal{G}(L)$: graphs accepted by L.

Focus: The diameter of $\mathcal{G}(L)$ as a function of *n* for **trees**.

Question: For which functions f is there a local checker L_f , such that $\mathcal{G}(L_f)$ has maximum (resp. minimum, exact) diameter f?

Motivation 1: Modeling living beings

Simple model for how living beings maintain a given shape, without centralized information.

Definition: Locally checkable labelings (LCL): problems on bounded degree graphs whose output can be checked locally

Definition: Locally checkable labelings (LCL): problems on bounded degree graphs whose output can be checked locally

Definition: Locally checkable labelings (LCL): problems on bounded degree graphs whose output can be checked locally

Fascinating **complexity landscape** for solving LCLs the LOCAL model.

Definition: Locally checkable labelings (LCL): problems on bounded degree graphs whose output can be checked locally

Fascinating **complexity landscape** for solving LCLs the LOCAL model.

Definition: Locally checkable labelings (LCL): problems on bounded degree graphs whose output can be checked locally

Fascinating **complexity landscape** for solving LCLs the LOCAL model.

Definition: Locally checkable labelings (LCL): problems on bounded degree graphs whose output can be checked locally

Fascinating **complexity landscape** for solving LCLs the LOCAL model.

Definition: Locally checkable labelings (LCL): problems on bounded degree graphs whose output can be checked locally

Fascinating **complexity landscape** for solving LCLs the LOCAL model.

Theorem: For all f in $\Theta(n)$ or $\leq n^{2/3}$, there exists a local checker L at distance 2, such that $\mathcal{G}(L)$ has exact diameter is f.

Theorem: For all f in $\Theta(n)$ or $\leq n^{2/3}$, there exists a local checker L at distance 2, such that $\mathcal{G}(L)$ has exact diameter is f.

Techniques:

- Refining the \sqrt{n} construction.
- ► Smaller diameter via padding
- ► Forbidden zone via pumping

Theorem: For all f in $\Theta(n)$ or $\leq n^{2/3}$, there exists a local checker L at distance 2, such that $\mathcal{G}(L)$ has exact diameter is f.

Techniques:

- Refining the \sqrt{n} construction.
- ► Smaller diameter via padding
- ► Forbidden zone via pumping

Theorem: For all f in $\Theta(n)$ or $\leq n^{2/3}$, there exists a local checker L at distance 2, such that $\mathcal{G}(L)$ has exact diameter is f.

Techniques:

- Refining the \sqrt{n} construction.
- Smaller diameter via padding
- ► Forbidden zone via pumping

Applications to LCLs

Generalized theorem: For all f in $\Theta(n)$ or $\leq n/\log n$, there exists a local checker L at some distance d, such that $\mathcal{G}(L)$ has exact diameter is f.

 \rightarrow Theorem: For unbounded degree there exists LCLs with almost all possible complexities (ie there is no real gap in the landscape).

Proof idea: Design the LCL such that the hardest instances are the ones of $\mathcal{G}(L)$, and that on these instances one has to solve a global problem.

Applications to LCLs

Generalized theorem: For all f in $\Theta(n)$ or $\leq n/\log n$, there exists a local checker L at some distance d, such that $\mathcal{G}(L)$ has exact diameter is f.

 \rightarrow Theorem: For unbounded degree there exists LCLs with almost all possible complexities (ie there is no real gap in the landscape).

Proof idea: Design the LCL such that the hardest instances are the ones of $\mathcal{G}(L)$, and that on these instances one has to solve a global problem.

Summary: No nice complexity landscape, using arbitrarily complicated checkers.

Question: What about restricted checkers?

Definition (simplified): A local checker is myopic if it rejects as soon as one of the neighbors of the node v has degree different from 1, deg(v), deg(v) - 1 and deg(v) + 1.

Theorem: For myopic checkers, the maximum diameter is in one of the following regimes: O(1), $\Theta\left(\frac{\log n}{\log \log n}\right)$, $\Theta(\log n)$, $\Theta(\sqrt{n})$ and $\Theta(n)$.

Research directions

- Generalize myopic checkers to handle more cases.
- Study other restrictions with logic characterizations or restricted computational power.
- Understand the diameter of graphs with cycles.
- Global parameters different from diameter (max clique, symmetries, homogeneity...)
- ► Better models for living beings.