
How local constraints influence
network diameter

and applications to LCL generalizations

d

Nicolas Bousquet

Laurent Feuilloley
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Warm-up

Caterpillar example: A path, where vertex i gets i leaves.

Local verification algorithm:
For every v : Look at distance 2.
If degree(v)=1, accept.
Otherwise, check:≤ 2 non-leaf neighbors and degrees are consistent.
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Local checkers

Definition: A local checker at distance d is
a distributed graph algorithm that:

▶ Takes a snapshot of its distance-d
neighborhood.

▶ Outputs a binary decision: Accept or
reject.

Definition: A local checker L accepts a
graph G if all nodes output accept.



Focus and question

Definition: G(L): graphs accepted by L.

Focus: The diameter of G(L) as a function
of n for trees.

Question: For which functions f is there a
local checker Lf , such that G(Lf ) has maxi-
mum (resp. minimum, exact) diameter f ?
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Motivation 1: Modeling living beings
Simple model for how living beings maintain a given shape, without centralized
information.



Motivation 2: LCLs beyond bounded degree

Definition: Locally checkable labelings (LCL): problems on bounded degree graphs
whose output can be checked locally

Fascinating complexity landscape for solving LCLs the LOCAL model.

Question: Do we still have a nice landscape with gaps for unbounded degree?
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Results on exact diameter

Theorem: For all f in Θ(n) or ≤ n2/3, there
exists a local checker L at distance 2, such
that G(L) has exact diameter is f .

Techniques:

▶ Refining the
√
n construction.

▶ Smaller diameter via padding

▶ Forbidden zone via pumping
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Applications to LCLs

Generalized theorem: For all f in Θ(n) or ≤ n/ log n, there exists a local checker L
at some distance d , such that G(L) has exact diameter is f .

→ Theorem: For unbounded degree there exists LCLs with almost all possible
complexities (ie there is no real gap in the landscape).

Proof idea: Design the LCL such that the hardest instances are the ones of G(L), and
that on these instances one has to solve a global problem.
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Myopic checkers

Summary: No nice complexity landscape, using arbitrarily complicated checkers.

Question: What about restricted checkers?

Definition (simplified): A local checker is myopic if it rejects as soon as one of the
neighbors of the node v has degree different from 1, deg(v), deg(v)− 1 and
deg(v) + 1.

Theorem: For myopic checkers, the maximum diameter is in one of the following

regimes: O(1), Θ
(

log n
log log n

)
, Θ(log n), Θ(

√
n) and Θ(n).



Research directions

▶ Generalize myopic checkers to handle more cases.

▶ Study other restrictions with logic characterizations or restricted computational
power.

▶ Understand the diameter of graphs with cycles.

▶ Global parameters different from diameter (max clique, symmetries,
homogeneity...)

▶ Better models for living beings.


