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Warm-up

Caterpillar example: A path, where vertex i gets i leaves.
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Warm-up

Caterpillar example: A path, where vertex i gets i leaves.

Local verification algorithm:

For every v: Look at distance 2.

If degree(v)=1, accept.

Otherwise, check:< 2 non-leaf neighbors and degrees are consistent.
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Local checkers

Definition: A Jocal checker at distance d is L: \// X
a distributed graph algorithm that:

» Takes a snapshot of its distance-d

v
neighborhood. of O oV / [_
o cepls
» Outputs a binary decision: Accept or Y Ve qe P 6

reject.

Definition: A local checker L accepts a
graph G if all nodes output accept.
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Focus and question

Definition: G(L): graphs accepted by L.

Focus: The diameter of G(L) as a function

of n for trees.
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Focus and question

Definition: G(L): graphs accepted by L.
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Focus: The diameter of G(L) as a function

of n for trees. . E)(act Diamefcr
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Question: For which functions f is there a e ~

local checker L¢, such that G(Ls) has maxi- i

mum (resp. minimum, exact) diameter f? # nOdes



Motivation 1: Modeling living beings

Simple model for how living beings maintain a given shape, without centralized
information.
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Motivation 2: LCLs beyond bounded degree

Definition: Locally checkable labelings (LCL): problems on bounded degree graphs
whose output can be checked locally
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Results on exact diameter

Theorem: For all f in ©(n) or < n?/3 there
exists a local checker L at distance 2, such
that G(L) has exact diameter is f.
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Techniques:
» Refining the y/n construction.

» Smaller diameter via padding

» Forbidden zone via pumping
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Applications to LCLs

Generalized theorem: For all f in ©(n) or < n/log n, there exists a local checker L
at some distance d, such that G(L) has exact diameter is f.

— Theorem: For unbounded degree there exists LCLs with almost all possible
complexities (ie there is no real gap in the landscape).

Proof idea: Design the LCL such that the hardest instances are the ones of G(L), and
that on these instances one has to solve a global problem.
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Myopic checkers

Summary: No nice complexity landscape, using arbitrarily complicated checkers.
Question: What about restricted checkers?

Definition (simplified): A local checker is myopic if it rejects as soon as one of the
neighbors of the node v has degree different from 1, deg(v), deg(v) — 1 and
deg(v) + 1.

Theorem: For myopic checkers, the maximum diameter is in one of the following

regimes: O(1), © (lolgoﬁ)gn), O©(log n), ©(y/n) and ©(n).




Research directions

» Generalize myopic checkers to handle more cases.

» Study other restrictions with logic characterizations or restricted computational
power.

» Understand the diameter of graphs with cycles.

» Global parameters different from diameter (max clique, symmetries,
homogeneity...)

» Better models for living beings.



