Local verification of global proofs Laurent Feuilloley (SU) joint work with Juho Hirvonen (Aalto)

ESTATE+DESCARTES meeting · April 2019

Local decision

- ► Setting : distributed synchronous network computing.
- ► Goal : check whether the network satisfies some property.
- ► Constraint : every node knows only its view at distance 1.
- Identifiers on $O(\log n)$ bits.

Decision rule

[Awerbuch, Patt-Shamir, Varghese 91], [Naor,Stockmeyer 93], [Itkis, Levin 94], [Afek, Kutten,Yung 97].

Decision rule :

- ► Every node makes one (local) decision : *accept* or *reject*.
- The configuration is accepted if and only if all the local decisions are *accept*.

Limits of local decision

Property to check :

The marked edges form a spanning tree of the network.

Theorem [Folklore] :

There is no local decision algorithm to decide this property.

Extra information

Idea from fault-tolerance : store extra information at the nodes.

Example : for spanning trees, store root ID, and distance to root.

Local certification

Abstraction :

Certificates are given by a prover, and the nodes verify.

Definition [Korman-Kutten-Peleg 05] :

A certificate (or proof) assignment is a function $V \rightarrow \{0,1\}^k$. (k is the size.)

Correctness rule :

- Good configuration $\rightarrow \exists$ certificates, $\forall v$, v accepts.
- ▶ Bad configuration, $\rightarrow \forall$ certificates, $\exists v, v$ rejects.

Spanning tree scheme

Verifier on node *v* :

- Check : neighbours have same root-ID.
- If d = 0 : check the root-ID ∀ neighbour u, d(u) = 1.
- ► If d > 0: ∃ neighbour u, d(u) = d - 1∀ neighbour $w \neq u$, d(w) = d + 1

Theorem [Itkis-Levin 94] : The spanning tree scheme is a correct.

Spanning tree scheme

Verifier on node v :

- Check : neighbours have same root-ID.
- If d = 0 : check the root-ID
 ∀ neighbour u, d(u) = 1.
- If d > 0: ∃ neighbour u, d(u) = d - 1∀ neighbour $w \neq u$, d(w) = d + 1

Theorem [Itkis-Levin 94] : The spanning tree scheme is a correct.

Uniformity

In the spanning tree scheme, we have two parts :

- 1. The ID of the root. Uniform (the same for every node). \hookrightarrow "global".
- 2. The distance to the root. Different for every node. \hookrightarrow "local".

Uniformity

Questions : what if we want to have the whole proof uniform ? Is it always possible? At what price ?

Why should we care? Study of locality. Other models.

First elements : For some properties, the best proofs are uniform. \rightarrow Isomorphism, AMOS.

General transformation

 $\textbf{Non-uniform} \rightarrow \textbf{uniform}$: list everything with the ID.

Size : $k \to O(n \cdot (\log n + k)) \longrightarrow$ Can we do better??

For spanning trees

Size : $k = \log n \rightarrow O(n \cdot (\log n + k)) = O(n \log n)$.

 \rightsquigarrow Can we do better than $O(n \log n)$?

Remark : The ID part is uniform from the start, the problem is the distances.

Answer : nope.

Proof (or some bits of it) :

Somehow :

certify a spanning tree \sim certify that there is exactly one root.

Previous works : At most one root needs local $\Omega(\log n)$.

This work At least one root needs global $\Omega(n \log n)$.

Proof

Proof

Lemma :

not two permutations of blocks can have the same global proof.

Nb of permutations = $n! \Rightarrow$ at least n! different proofs. \hookrightarrow we need log(n!) bits, that is $\Omega(n \log n)$.

Minimum spanning tree

Local size : $\Theta(\log^2 n)$.

General transformation :

 $k = \log^2 n \rightarrow O(n \cdot (\log n + \log^2 n)) = O(n \log^2 n).$ We can do better ! We can shave a log. Same space as for simple spanning trees : $O(\log n)$.

Open question

Property to check : bipartiteness.

Local size : O(1) bits.

General transformation : $O(n \cdot (\log n + 1)) = O(n \log n)$.

Can we do better??