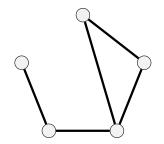
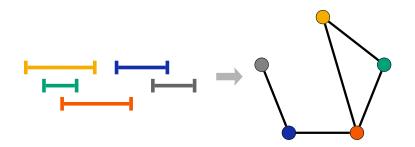
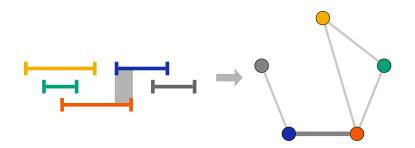

Graph classes defined via vertex ordering avoiding patterns

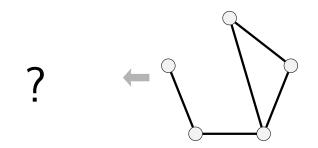

Laurent Feuilloley joint work with Yacine Boufkhad, Pierre Charbit, and Michel Habib Université Paris Diderot GROW · Toronto · October 2017

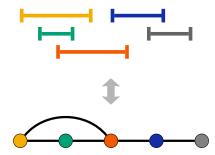
Disclaimer This is mostly a survey

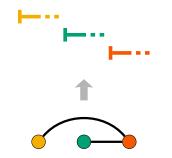

Warm-up : Interval graphs

Interval graphs

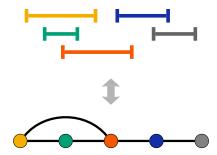


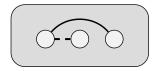

Interval graphs From intervals to graphs

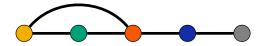

Interval graphs From intervals to graphs

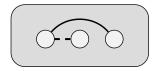

Interval graphs From graphs to intervals

Interval graphs with an ordering

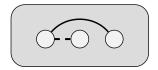

Interval graphs with an ordering

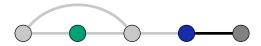


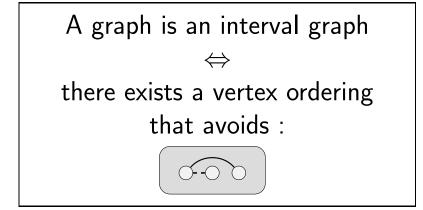

An ordered graph represents an interval graph

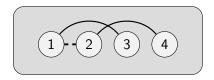

 \Leftrightarrow

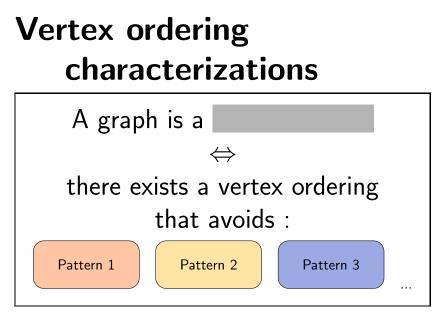
it avoids the pattern :





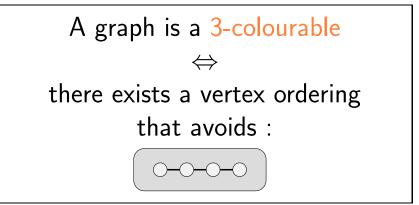





Definitions

Pattern

For an ordered subgraph to match the pattern :


- plain edges must be present,
- dashed edges must be absent,
- non-edges have no constraint.

[Damaschke 90]

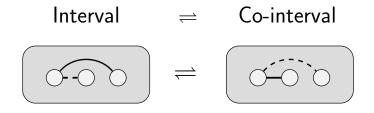
Examples A zoo of classes

k-colourable

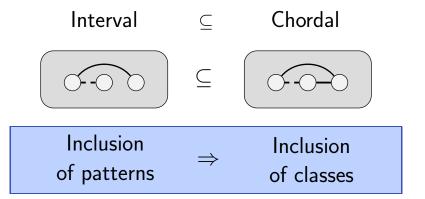
On three nodes

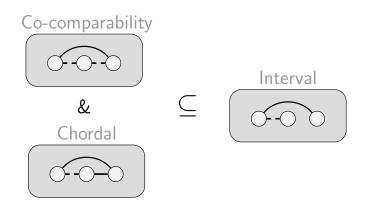
Interval

Tree

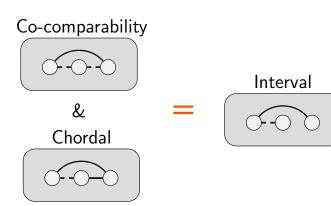

Path

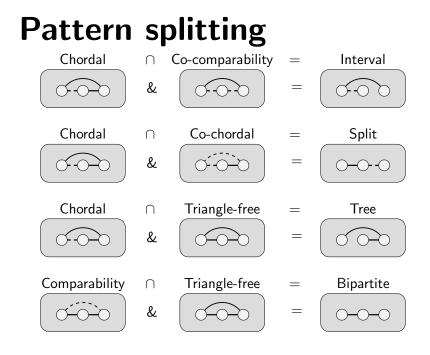
Structure


Complement

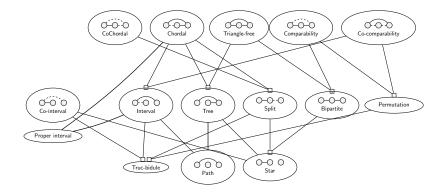

Inversion of dashed/plain ⇔ edges

Complement class


Inclusion



Pattern splitting



Pattern splitting

Diagram

Recognition

NP

Recognition of classes defined by forbidden patterns is in NP.

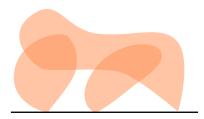
The ordering can be checked in polytime.

On three nodes

Theorem : Classes defined by patterns on three nodes can be recognized in polynomial-time.

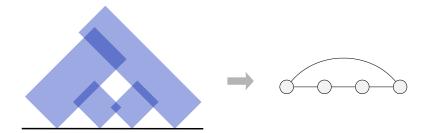
Proof history :

- Class by class;
- class by class with orderings;
- ► a general algorithm [Hell, Mohar, Rafiey, 2014];
- ► a general algorithm with a simpler analysis?

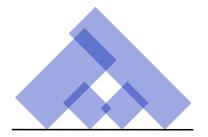

General case

- Some classes can be recognized in polytime, e.g. outerplanar graphs;
- ► Some are NP-complete, e.g. *k*-colourability;
- Almost all the classes defined by 2-connected patterns are NP-complete to recognize [Duffus, Ginn, Rödl, 95].
- ► It seems that there is no dichotomy [Nešetřil 17].

Geometry


Grounded intersection graphs

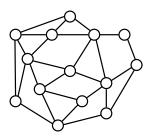
Grounded intersection graphs



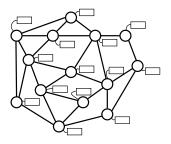


Grounded rectangles graphs

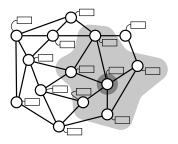
Grounded rectangles graphs

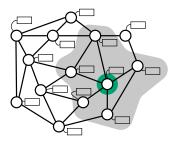


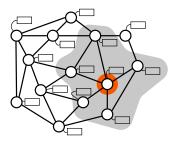
Applications to algorithms

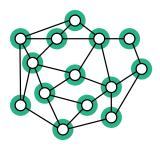

Applications to algorithms Tomorrow !

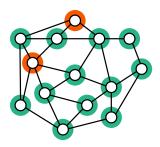
Applications to distributed decision


- 1. A prover gives to each node a small certificate
- Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
- 3. The graph is accept iff all nodes accept.


- 1. A prover gives to each node a small certificate
- Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
- 3. The graph is accept iff all nodes accept.


- 1. A prover gives to each node a small certificate
- Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
- 3. The graph is accept iff all nodes accept.


- 1. A prover gives to each node a small certificate
- Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
- 3. The graph is accept iff all nodes accept.


- 1. A prover gives to each node a small certificate
- Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
- 3. The graph is accept iff all nodes accept.

- 1. A prover gives to each node a small certificate
- Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
- 3. The graph is accept iff all nodes accept.

- 1. A prover gives to each node a small certificate
- Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
- 3. The graph is accept iff all nodes accept.

Distributed NP recognition

The ordering is a useful certificate that can be checked locally for many classes.

Take-home message

Vertex ordering characterizations are all around us.

There are a lot of open questions worth investigating !