Graph classes and forbidden patterns on three and four vertices

Laurent Feuilloley and Michel Habib

Based on

Graph classes and forbidden patterns on three vertices

$$
\begin{aligned}
& \text { (to appear in SIDMA) } \\
& \text { and on on-going work. }
\end{aligned}
$$

IRIF Graph Seminar • 24th November 2020

Interval graphs : geometry

Interval graphs : geometry

Interval graphs : geometry

Definition : A graph is an interval graph if it is the intersection graph of a set of intervals.

Interval graphs : geometry

Definition : A graph is an interval graph if it is the intersection graph of a set of intervals.

Interval graphs : with an ordering

Characterization : A graph is an interval graph if and only if, there exists an ordering of its vertices such that for every $u<v<w$, if (u, w) is an edge then (u, v) is also an edge.

Interval graphs : with an ordering

Characterization : A graph is an interval graph if and only if, there exists an ordering of its vertices such that for every $u<v<w$, if (u, w) is an edge then (u, v) is also an edge.

Interval graphs : with an ordering

Characterization : A graph is an interval graph if and only if, there exists an ordering of its vertices such that for every $u<v<w$, if (u, w) is an edge then (u, v) is also an edge.

Interval graphs : with an ordering

Characterization : A graph is an interval graph if and only if, there exists an ordering of its vertices such that for every $u<v<w$, if (u, w) is an edge then (u, v) is also an edge.

Interval graphs : with an ordering

Characterization : A graph is an interval graph if and only if, there exists an ordering of its vertices such that for every $u<v<w$, if (u, w) is an edge then (u, v) is also an edge.

Interval graphs : with an ordering

Characterization : A graph is an interval graph if and only if, there exists an ordering of its vertices such that for every $u<v<w$, if (u, w) is an edge then (u, v) is also an edge.

Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an ordering of its vertices such that the following pattern does not appear :

Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an ordering of its vertices such that the following pattern does not appear :

Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an ordering of its vertices such that the following pattern does not appear :

Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an ordering of its vertices such that the following pattern does not appear :

Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an ordering of its vertices such that the following pattern does not appear :

INTERVAL
CO-COMPARABILITY

Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an ordering of its vertices such that the following pattern does not appear :

INTERVAL
Co-comparability

Bipartite

Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an ordering of its vertices such that the following pattern does not appear :

Already noted by Skrien in 82 and Damashke in 90 .

Example : bipartite graphs

Definition: A GRAPH is bipartite if it can be split into two iNDEPENDENT SETS

CHARACTERIZATION: A GRAPH is BiPARTITE IF THERE EXISTS A VERTEX ORDERING WITHOUT:

Example : bipartite graphs

DEFINITION: A GRAPH is BIPARTITE if it CAN be split into Two INDEPENDENT SETS

Characterization: A Graph is bipartite if there Exists A VERTEX ORDERING wiThout:

Example : bipartite graphs

DEFINITION: A GRAPH is BIPARTITE if it CAN BE SPLIT into TWO İNDEPENDENT SETS

Characterization: A Graph is bipartite if there Exists A VERTEX ORDERING WITHOUT: O-O-O
$\rightarrow 0-0,000,000$
FORBIDDEN

Example : bipartite graphs

DEFiNition: a graph is bipartite if it can be split into two independent sets

CHARACTERIZATION: A GRAPH
is BiPARTITE IF THERE EXISTS
A VERTEX ORDERING WITHOUT:

Example : bipartite graphs

DEFINITION: A GRAPH is BIPARTITE if it can be split into two independent sets

CHARACTERIZATION: A GRAPH is BIPARTITE IF THERE EXISTS A VERTEX ORDERING wITHOUT:

Example : bipartite graphs

DEFINITION: A GRAPH is BIPARTITE if it can be split into two independent sets

CHARACTERIZATION: A GRAPH is BIPARTITE IF THERE EXISTS A Vertex ordering without:

Example : trees

DEFINITION : A GRAPH is A TREE if it is ACYCLic (*)

CHARACTERIZATION: A GRAPH is A TREE if THERE EXiSTS A VERTEX ORDERING WITHOUT:

(*) LET's NOT WORRY ABOUT CONNECTivity

Example : trees

DEFINITION : A GRAPH is A TREE if it is ACYCLic (*)

(*) LET'S NOT WORRY ABOUT CONNECTivity

CHARACTERIZATION: A GRAPH is A TREE if THERE EXists A VERTEX ORDERING WITHOUT:

Example : trees

DEFINITION : A GRAPH is A TREE if it is ACYCLic (*)

CHARACTERIZATION: A GRAPH is A TREE if THERE EXists A VERTEX ORDERING WITHOUT:

(*) LET's NOT WORRY ABOUT CONNECTivity

Example : trees

DEFINITION : A GRAPH is A TREE if it is ACYCLic (*)

Characterization: A GRAPH is A TREE if THERE EXists A VERTEX ORDERING WITHOUT:
(*) LET's NOT WORRY ABOUT CONNECTivity

Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an ordering of its vertices such that the following patterns do not appear :

Pattern characterization
Characterization : A graph is a XXX if and only if, there exists an ordering of its vertices such that the following patterns do not appear :

Theorem

Theorem : Up to a few simple operations, the non-trivial classes defined by a set of pattern (on three nodes) are :

1. forests	10. permutation	18. augmented
2. linear forests	11. threshold	clique
3. stars	12. proper interval	19. bipartite
4. interval	13. caterpillar	permutation
5. split 14. trivially perfect	20. \cap co-chordal	
6. bipartite	15. bipartite chain	21. clique
7. chordal	16. 2 -star	22. complete
8. comparability	17. -split	bipartite
9. triangle-free	17.	

Structure

- Mirror patterns

$$
\{\therefore 0, \infty 0\} \stackrel{\text { ivan }}{=}\{000,600\}
$$

Structure

- Mirror patterns
- Complementary patterns

Structure

- Mirror patterns
- Complementary patterns
- Inclusions of patterns \rightarrow classes inclusions

Structure

- Mirror patterns
- Complementary patterns
- Inclusions of patterns \rightarrow classes inclusions
- Intersections

Structure

- Mirror patterns
- Complementary patterns
- Inclusions of patterns \rightarrow classes inclusions
- Intersections
- "Splitting patterns"

Structure

Complexity and algorithms

An ordering can be checked in polytime \rightarrow Recognition is in NP.

Theorem (Hell, Mohar and Rafiey) : Every class defined by a set of patterns on three nodes can be recognized in time $O\left(n^{3}\right)$.

New theorem : Every class defined by patterns on three nodes can be recognized in linear time except two of them (in time $O\left(n^{2,37}\right)$), and mostly thanks to graph traversals.

What about 4 vertices?

- A lot more cases, much less is known.

What about 4 vertices?

- A lot more cases, much less is known.
- 3-colorable graphs, with one pattern on 4 nodes.
\rightarrow NP-complete recognition.

3-COLORABLE \longrightarrow

What about 4 vertices?

- A lot more cases, much less is known.
- 3-colorable graphs, with one pattern on 4 nodes.
\rightarrow NP-complete recognition.
- Classes related to P_{4} : cographs, trivially perfect (\rightarrow general transformation)

$$
\text { COGRAPHS }=P_{4}-\text { FREE }
$$

What about 4 vertices?

- A lot more cases, much less is known.
- 3-colorable graphs, with one pattern on 4 nodes.
\rightarrow NP-complete recognition.
- Classes related to P_{4} : cographs, trivially perfect (\rightarrow general transformation)
- Grounded intersection graphs

Grounded intersection graphs

$$
\text { GROUNDED SHAPES } \subseteq \varphi(\cdots)
$$

Grounded intersection graphs

$$
\text { GROUNDED SHAPES } \subseteq \varphi(\cdots \cdots
$$

Grounded intersection graphs

Grounded intersection graphs

Grounded intersection graphs

Open problems

A few concrete open problems:

- Clarify the interplay between grounded intersection model and patterns.
- Complexity of recognition of grounded rectangle graphs: P or NP ?
- Find a criterion for deciding the complexity of the class based on its patterns.

