
Graph classes and forbidden patterns
on three and four vertices

Laurent Feuilloley and Michel Habib

Based on
Graph classes and forbidden patterns on three vertices

(to appear in SIDMA)
and on on-going work.

Short version · November 2020



Interval graphs : geometry

Definition : A graph is an interval graph if it is the intersection
graph of a set of intervals.



Interval graphs : geometry

Definition : A graph is an interval graph if it is the intersection
graph of a set of intervals.



Interval graphs : geometry

Definition : A graph is an interval graph if it is the intersection
graph of a set of intervals.



Interval graphs : geometry

Definition : A graph is an interval graph if it is the intersection
graph of a set of intervals.



Interval graphs : with an ordering
Characterization : A graph is an interval graph if and only if,
there exists an ordering of its vertices such that for every
u < v < w , if (u,w) is an edge then (u, v) is also an edge.



Interval graphs : with an ordering
Characterization : A graph is an interval graph if and only if,
there exists an ordering of its vertices such that for every
u < v < w , if (u,w) is an edge then (u, v) is also an edge.



Interval graphs : with an ordering
Characterization : A graph is an interval graph if and only if,
there exists an ordering of its vertices such that for every
u < v < w , if (u,w) is an edge then (u, v) is also an edge.



Interval graphs : with an ordering
Characterization : A graph is an interval graph if and only if,
there exists an ordering of its vertices such that for every
u < v < w , if (u,w) is an edge then (u, v) is also an edge.



Interval graphs : with an ordering
Characterization : A graph is an interval graph if and only if,
there exists an ordering of its vertices such that for every
u < v < w , if (u,w) is an edge then (u, v) is also an edge.



Interval graphs : with an ordering
Characterization : A graph is an interval graph if and only if,
there exists an ordering of its vertices such that for every
u < v < w , if (u,w) is an edge then (u, v) is also an edge.



Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an
ordering of its vertices such that the following pattern does not
appear :

Already noted by Skrien in 82 and Damashke in 90.



Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an
ordering of its vertices such that the following pattern does not
appear :

Already noted by Skrien in 82 and Damashke in 90.



Pattern characterization

Characterization : A graph is a XXX if and only if, there exists an
ordering of its vertices such that the following pattern does not
appear :

Already noted by Skrien in 82 and Damashke in 90.



Pattern characterization
Characterization : A graph is a XXX if and only if, there exists an
ordering of its vertices such that the following pattern does not
appear :

Already noted by Skrien in 82 and Damashke in 90.



Pattern characterization
Characterization : A graph is a XXX if and only if, there exists an
ordering of its vertices such that the following pattern does not
appear :

Already noted by Skrien in 82 and Damashke in 90.



Pattern characterization
Characterization : A graph is a XXX if and only if, there exists an
ordering of its vertices such that the following pattern does not
appear :

Already noted by Skrien in 82 and Damashke in 90.



Pattern characterization
Characterization : A graph is a XXX if and only if, there exists an
ordering of its vertices such that the following pattern does not
appear :

Already noted by Skrien in 82 and Damashke in 90.



Pattern characterization
Characterization : A graph is a XXX if and only if, there exists an
ordering of its vertices such that the following patterns do not
appear :



Pattern characterization
Characterization : A graph is a XXX if and only if, there exists an
ordering of its vertices such that the following patterns do not
appear :



Theorem

Theorem : Up to a few simple operations, the non-trivial classes
defined by a set of pattern (on three nodes) are :

1. forests

2. linear forests

3. stars

4. interval

5. split

6. bipartite

7. chordal

8. comparability

9. triangle-free

10. permutation

11. threshold

12. proper interval

13. caterpillar

14. trivially perfect

15. bipartite chain

16. 2-star

17. 1-split

18. augmented
clique

19. bipartite
permutation

20. triangle-free
∩ co-chordal

21. clique

22. complete
bipartite



Structure

I Mirror patterns

I Complementary patterns

I Inclusions of patterns → classes inclusions

I “Splitting patterns”



Structure

I Mirror patterns

I Complementary patterns

I Inclusions of patterns → classes inclusions

I “Splitting patterns”



Structure

I Mirror patterns

I Complementary patterns

I Inclusions of patterns → classes inclusions

I “Splitting patterns”



Structure

I Mirror patterns

I Complementary patterns

I Inclusions of patterns → classes inclusions

I “Splitting patterns”



Algorithms

Theorem (Hell, Mohar and Rafiey) : Every class defined by a
set of patterns on three nodes can be recognized in time O(n3).

New theorem : Every class defined by patterns on three nodes
can be recognized in linear time except two of them (in time
O(n2,37)), and mostly thanks to graph traversals.



What about 4 vertices ?

I A lot more cases, much less is known.

I A few examples : 3-colorable graphs, cographs, trivially
perfect.

I On the trail of grounded intersection graphs.



What about 4 vertices ?

I A lot more cases, much less is known.

I A few examples : 3-colorable graphs, cographs, trivially
perfect.

I On the trail of grounded intersection graphs.



What about 4 vertices ?

I A lot more cases, much less is known.

I A few examples : 3-colorable graphs, cographs, trivially
perfect.

I On the trail of grounded intersection graphs.



What about 4 vertices ?

A few concrete open problems :

I Complexity of recognition of grounded rectangle graphs : P or
NP ?

I List of the classes that have both a pattern characterization
and a grounded intersection model.

I Find a criterion for deciding the complexity of the class based
on its patterns.


