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Theorem

Theorem : Up to a few simple operations, the non-trivial classes
defined by a set of pattern (on three nodes) are :

1. forests

2. linear forests

3. stars

4. interval

5. split

6. bipartite

7. chordal

8. comparability

9. triangle-free

10. permutation

11. threshold

12. proper interval

13. caterpillar

14. trivially perfect

15. bipartite chain

16. 2-star

17. 1-split

18. augmented
clique

19. bipartite
permutation

20. triangle-free
∩ co-chordal

21. clique

22. complete
bipartite
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Algorithms

Theorem (Hell, Mohar and Rafiey) : Every class defined by a
set of patterns on three nodes can be recognized in time O(n3).

New theorem : Every class defined by patterns on three nodes
can be recognized in linear time except two of them (in time
O(n2,37)), and mostly thanks to graph traversals.
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perfect.
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What about 4 vertices ?

A few concrete open problems :

I Complexity of recognition of grounded rectangle graphs : P or
NP ?

I List of the classes that have both a pattern characterization
and a grounded intersection model.

I Find a criterion for deciding the complexity of the class based
on its patterns.


