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General goal

Identify instances and solutions

that are more robust than others
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Necessary restrictions

In some situations there is
no hope to get any sort of
robustness.

→ Very sensitive problems, eg
maintain the number of edges

→ Arbitrary dynamic.
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Restriction of the dynamic

Assumption on the dynamic:

I Edge removals only (static vertex set, no edge additions)

I Keeping connectivity.
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Restriction of the dynamic

Assumption on the dynamic:

I Edge removals only (static vertex set, no edge additions)

I Keeping connectivity.

Motivations:

I Decaying networks

I More promising

I Eventual footprint.

Robustness: A new form of heredity motivated by dynamic
networks by Casteigts, Dubois, Petit, Robson. 2020.
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Granularity of edge-removals

New parameter: k = number of edges removed.

A solution is k-robust if it is still correct after k edge removals.
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Focus on local problems

Locally checkable problems (LCL): the solution is correct if and
only if it is locally correct everywhere.

Our three problems:
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Two basic questions

For a problem P and a parameter k :

Universal question: What is the set of graphs such that all
solutions are k-robust, UP

k ?

Existential question: What is the set of graphs such that there
exists a solution that is k-robust, EPk ?

→ Examples with P = maximal matching and k = 1.

11



Basic building blocks

Trees Sputnik graphs
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Minimal dominating set results

Theorem: ∀k, UMDS
k = {Sputnik graphs}.

Proof idea:
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Maximal matchings results
Theorem:

UMM
1 = balanced bicliques (Kt,t), even cliques (K2n), and trees.

UMM
k>1 = cycle C4, and trees.
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Maximal matchings results
Theorem:

UMM
1 = balanced bicliques (Kt,t), even cliques (K2n), and trees.

UMM
k>1 = cycle C4, and trees.

Core of the proof: proving that “G ∈ UMM
1 ” is equivalent to “all

maximal matchings in G are perfect matchings” (except for trees).

Theorem [Summer79]: Randomly matchable graphs = {Ktt ,K2n}.
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Maximal independent set results

→ No exact characterization of UMIS
k . :-(

Theorem: A strict hierarchy: UMIS
k+1 ( UMIS

k .

Proof: Gk ∈ UMIS
k \ UMIS

k+1 :
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About the existential question
Theorem [CDPR20]: There exists a polynomial time algorithm to
decide if a graph belongs to EMIS

∞ .

Theorem: Deciding EMIS
1 is NP-hard.

Proof: Focus on the 2-connected case where is it equivalent to
“perfect stable” (= every node not in the set is dominated at least
twice).

Theorem [Croitoru-Suditu 83] Deciding if there exists a perfect
stable is NP-hard. 20



Conclusion

I Universal question: Good understanding, but small classes.

I Existential question: Large classes but difficult to recognize
and use.

I Maybe the right question is in between: graphs such that
there exist robust solutions that are easy to find/maintain.

I Even better: new criteria to quickly measure the robustness of
subgraphs, in order to guide algorithms.

.
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