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General goal

|dentify instances and solutions

that are more robust than others



Necessary restrictions

In some situations there is
no hope to get any sort of
robustness.

— Very sensitive problems, eg
maintain the number of edges

— Arbitrary dynamic.



Restriction of the dynamic

Assumption on the dynamic:
» Edge removals only (static vertex set, no edge additions)

» Keeping connectivity.
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Restriction of the dynamic

Assumption on the dynamic:
» Edge removals only (static vertex set, no edge additions)

» Keeping connectivity.

Motivations:
» Decaying networks
» More promising

» Eventual footprint.

Robustness: A new form of heredity motivated by dynamic
networks by Casteigts, Dubois, Petit, Robson. 2020.



Granularity of edge-removals

New parameter: k = number of edges removed.

A solution is k-robust if it is still correct after k edge removals.
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Focus on local problems

Locally checkable problems (LCL): the solution is correct if and
only if it is locally correct everywhere.

Our three problems:

MiNIMAL - MAXIMAL
DOMINATING “‘X"““.L INDEPENDENT
ol MATCHiNG r

10



Two basic questions

For a problem P and a parameter k:

Universal question: What is the set of graphs such that all
solutions are k-robust, Z/l,f'?

Existential question: What is the set of graphs such that there
exists a solution that is k-robust, Ef?

— Examples with P = maximal matching and k = 1.
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Basic building blocks

Trees Sputnik graphs
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Minimal dominating set results

Theorem: Vk, U,f”DS = {Sputnik graphs}.

Proof idea:
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Minimal dominating set results

Theorem: Vk, U,f”DS = {Sputnik graphs}.

Proof idea:
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Maximal matchings results

Theorem:
UMM — balanced bicliques (K:.;), even cliques (K2,), and trees.

UMM = cycle G4, and trees.

Kan kree
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Maximal matchings results
Theorem:
UMM — balanced bicliques (K:.;), even cliques (K2,), and trees.

UMM = cycle G4, and trees.

Core of the proof: proving that “G € UMM is equivalent to “all
maximal matchings in G are perfect matchings” (except for trees).

Theorem [Summer79]: Randomly matchable graphs = { Ky, Kan}-
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Maximal independent set results

— No exact characterization of UM, :~(

Theorem: A strict hierarchy: Z/[Mf - Z/ILWS.

Proof: G, € UY® \uUYls:

k2
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Maximal independent set results

— No exact characterization of UM, -(

Theorem: A strict hierarchy: L{Mf C L{LV”S.

Proof: Gy € UM \Z/{Mf:

k2 k2
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Maximal independent set results

— No exact characterization of UM, :~(

Theorem: A strict hierarchy: Z/[Mf - Z/ILWS.

Proof: G, € UY® \uUYls:

k2
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About the existential question

Theorem [CDPR20]: There exists a polynomial time algorithm to
decide if a graph belongs to 50’\2"5.

Theorem: Deciding EM? is NP-hard.

Proof: Focus on the 2-connected case where is it equivalent to
“perfect stable” (= every node not in the set is dominated at least
twice).

Theorem [Croitoru-Suditu 83] Deciding if there exists a perfect
stable is NP-hard. 20



Conclusion

» Universal question: Good understanding, but small classes.

» Existential question: Large classes but difficult to recognize
and use.

» Maybe the right question is in between: graphs such that
there exist robust solutions that are easy to find/maintain.

» Even better: new criteria to quickly measure the robustness of
subgraphs, in order to guide algorithms.
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