# The Secretary Problem with Independent Sampling

José Correa Andrés Cristi Laurent Feuilloley Tim Oosterwijk Alexandros Tsigonias-Dimitriadis Universidad de Chile Universidad de Chile Université Lyon 1 Maastricht University TUM

MC2 seminar · ENS Lyon

18th March 2021

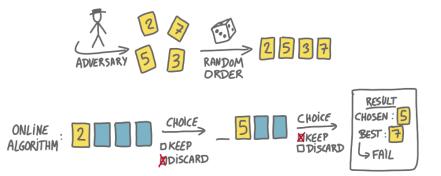
1. An adversary chooses a set of numbers.



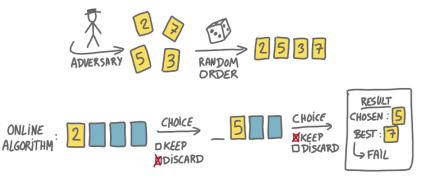
- 1. An adversary chooses a set of numbers.
- 2. The numbers are placed in a random order



- 1. An adversary chooses a set of numbers.
- 2. The numbers are placed in a random order
- 3. The numbers are presented to the player in that order.

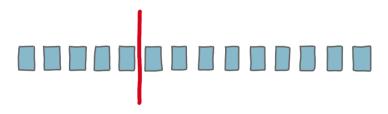


- 1. An adversary chooses a set of numbers.
- 2. The numbers are placed in a random order
- 3. The numbers are presented to the player in that order.
- 4. Goal: maximize probability of picking the max.



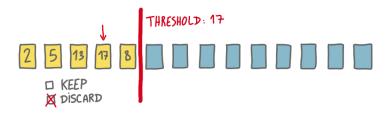
A stopping rule is a strategy of the following form:

- Discard the first r values, but keep in mind the maximum M.
- ► Take the first value that is higher than *M*.



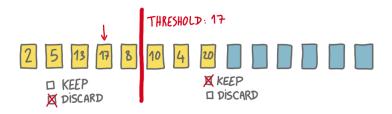
A stopping rule is a strategy of the following form:

- Discard the first r values, but keep in mind the maximum M.
- ► Take the first value that is higher than *M*.



A stopping rule is a strategy of the following form:

- Discard the first r values, but keep in mind the maximum M.
- ► Take the first value that is higher than *M*.



Theorem: Optimal strategies are stopping rules.

Theorem: Optimal strategies are stopping rules.

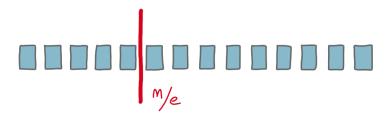
Intuitively:

- Taking the maximum so far is necessary.
- ► It is reasonable to wait to get some knowledge.
- One should not take the values into account to set of threshold.
- ► From the observation set, only the maximum is useful.

#### The optimal stop is n/e

**Theorem:** The optimal strategy is the stopping rule with r = 1/e.

- 1. Discard the n/e first values but remember the maximum M in this segment.
- 2. Keep the first value that exceeds M.



#### The optimal stop is n/e

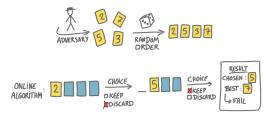
**Theorem:** The optimal strategy is the stopping rule with r = 1/e.

$$P(\text{win with } r) = \sum_{k=r}^{n} P(k \text{ is the best}) P(k \text{ is chosen}) | k \text{ is the best})$$
$$= \sum_{k=r}^{n} \frac{1}{n} P(\text{best of } [1, k-1] \text{ appears before } r)$$
$$= \sum_{k=r}^{n} \frac{1}{n} \frac{r-1}{k-1} = \frac{r-1}{n} \sum_{k=r}^{n} \frac{1}{k-1} \approx -x \log(x)$$

#### A bit of history

- ► Kepler (1613), interviews for marriage
- ► Cayley (1875), open problem about lottery
- ► A lot of work in the 50s, 60s and 70s, in the statistics/probability community.
- ▶ "A secretary winter" (?)
- Now popular again, especially in TCS, because of its links with algorithmic game theory (auctions, posted prices mechanisms etc.)

#### Variants of the secretary problem



There are many parameters of the problem that can be changed:

- ► The order can be random, adversarial, chosen by the player.
- The number of items: player can chose several items, possibly with constraints (matroid)
- The objective: maximize expectation vs probability of picking the max.

Other problems: Prophet inequality, Pandora's box problem.

#### Question:

## What happens if the algorithm is not completely ignorant about the numbers?

#### **Prior information**

- 1. Distributional information:
  - i.i.d. random variables (Gilbert and Mosteller 66)
  - ► independent variables from known distributions (Esfandiari et al. 20, Allart and Islas 15)
- 2. Samples
  - Initiated by Azar, Kleinberg and Weinberg 14.
  - ▶ i.i.d variables from unknown distributions (Correa et al. 19+, Rubinstein et al. 20)
  - ► Known distributions, one sample from each (Kaplan et al. 20, Correa et al. 20).
  - ► A fraction of the values are sampled (Kaplan et al. 20)

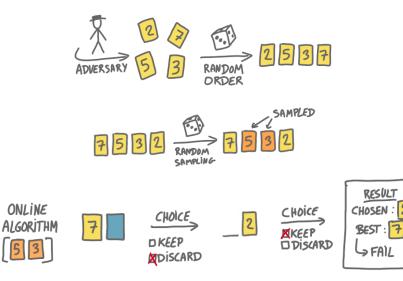
#### This paper

Problem: Secretary with independent sampling

The same as the classic secretary problem except that:

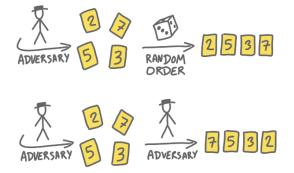
- 1. After the adversary's choice, every number is sampled with probability *p*.
- 2. The algorithm is given the sampled values, before the beginning.
- 3. The algorithm plays on the rest of the values.

#### Secretary with independent sampling



#### Adversarial and random order

Actually the problem comes in two flavors: either the order is random (like in the classic version) or it is chosen by the adversary.

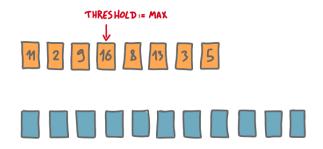


Let's try the following simple heuristics:

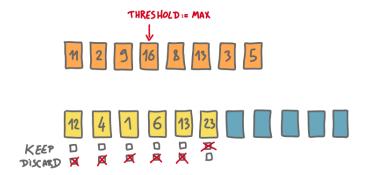




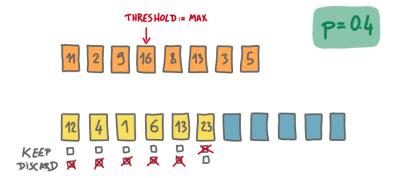
Let's try the following simple heuristics:



Let's try the following simple heuristics:



Let's try the following simple heuristics:



Let's try the following simple heuristics:





Let's try the following simple heuristics:



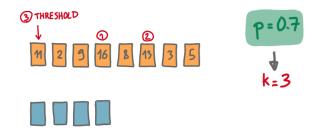




#### k<sup>th</sup> max sample strategy

 $\rightarrow$  Choose the  $k^{th}$  max of the samples as a threshold, where k grows when  $p\rightarrow 1$ 

The optimal k(p) is easy to compute:  $k(p) = \left| \frac{1}{1-p} \right|$ .



#### Adversarial order: $k^{th}$ -max is optimal

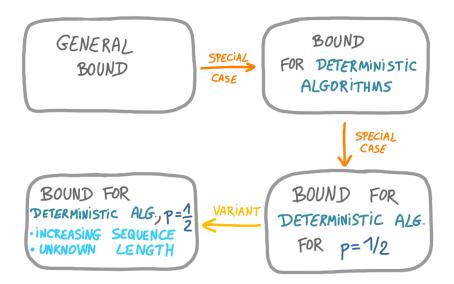


#### Theorem:

For the adversarial order, the  $k^{th}$ -max strategy is optimal.

**Proof shape:** Prove that the performance of the algorithm matches an "upper" bound.

#### Proof roadmap









One restriction: no knowledge of the length.

**Fact:** This variant of the problem is equivalent to the last yellow card game.

- ► There are *n* cards, with *n* unknown.
- ► Every card is colored blue with probability *p* and yellow otherwise.
- The player is given the number of blue cards.
- The cards are revealed one by one, and the player has to stop on the last yellow card.

One restriction: no knowledge of the length.

**Fact:** This variant of the problem is equivalent to the last yellow card game.

- ► There are *n* cards, with *n* unknown.
- ► Every card is colored blue with probability *p* and yellow otherwise.
- The player is given the number of blue cards.
- ► The cards are revealed one by one, and the player has to stop on the last yellow card.



One restriction: no knowledge of the length.

**Fact:** This variant of the problem is equivalent to the last yellow card game.

- ► There are *n* cards, with *n* unknown.
- ► Every card is colored blue with probability *p* and yellow otherwise.
- The player is given the number of blue cards.
- ► The cards are revealed one by one, and the player has to stop on the last yellow card.



One restriction: no knowledge of the length.

**Fact:** This variant of the problem is equivalent to the last yellow card game.

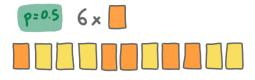
- ► There are *n* cards, with *n* unknown.
- ► Every card is colored blue with probability *p* and yellow otherwise.
- The player is given the number of blue cards.
- ► The cards are revealed one by one, and the player has to stop on the last yellow card.



One restriction: no knowledge of the length.

**Fact:** This variant of the problem is equivalent to the last yellow card game.

- ► There are *n* cards, with *n* unknown.
- ► Every card is colored blue with probability *p* and yellow otherwise.
- The player is given the number of blue cards.
- ► The cards are revealed one by one, and the player has to stop on the last yellow card.



One restriction: no knowledge of the length.

**Fact:** This variant of the problem is equivalent to the last yellow card game.

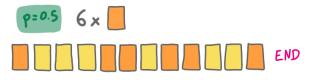
- ► There are *n* cards, with *n* unknown.
- ► Every card is colored blue with probability *p* and yellow otherwise.
- The player is given the number of blue cards.
- ► The cards are revealed one by one, and the player has to stop on the last yellow card.



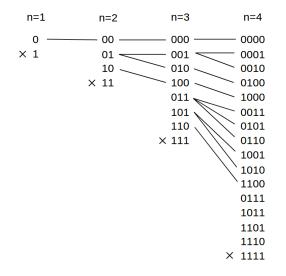
One restriction: no knowledge of the length.

**Fact:** This variant of the problem is equivalent to the last yellow card game.

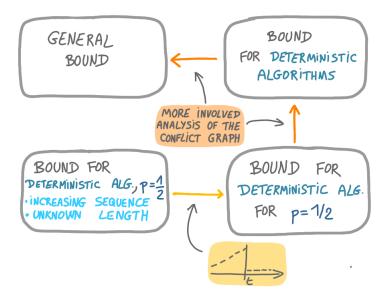
- ► There are *n* cards, with *n* unknown.
- ► Every card is colored blue with probability *p* and yellow otherwise.
- The player is given the number of blue cards.
- ► The cards are revealed one by one, and the player has to stop on the last yellow card.



## **Conflict graph**



#### Proof roadmap



#### Adversarial order: $k^{th}$ -max is optimal



#### Theorem:

For the adversarial order, the  $k^{th}$ -max strategy is optimal.

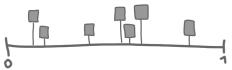
#### Random order



ightarrow Again we can design an optimal algorithm, but via a completely different technique.

#### **Proof technique**

1. Reformulate as random arrivals.



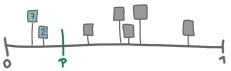
2. Any optimal strategy can be seen as a decreasing collection of thresholds.



3. The optimal thresholds are the solutions to an easy separable concave optimization problem.

#### **Proof technique**

1. Reformulate as random arrivals.



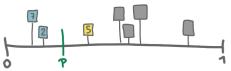
2. Any optimal strategy can be seen as a decreasing collection of thresholds.



3. The optimal thresholds are the solutions to an easy separable concave optimization problem.

#### **Proof technique**

1. Reformulate as random arrivals.



2. Any optimal strategy can be seen as a decreasing collection of thresholds.



3. The optimal thresholds are the solutions to an easy separable concave optimization problem.

#### Thank you for watching!

