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Locality



Distributed decision



Building vs. deciding

Yes/No



Distributed languages

Context :

◮ Communication graph G

◮ Node inputs, x : v 7→ x(v)

A language is
a set of configurations (G , x)

s.t. ∀G , ∃x , (G , x) ∈ L



Properly-colored graphs

L = {(G , x) s.t. x is a proper coloring of G}



Spanning forest

L = {(G , x) s.t. x describes a spanning forest of G}



Spanning forest

L = {(G , x) s.t. x describes a spanning forest of G}



Decision mechanism

Every node :

◮ gathers its
o 1-neighbourhood
◮ outputs a
o local decision
o accept or reject.
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Decision mechanism

(G , x) is accepted

if all node accept.



Decision mechanism

(G , x) is rejected

if at least one node

rejects.
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Properly-colored graphs
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Spanning forest



Spanning forest



Spanning forest



Proof-labeling schemes

Distributed
non-determinism
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Proof-labeling schemes

Given a proof-labeling scheme for L :

For all (G , x) :

◮ If (G , x) ∈ L :

∃c s.t. (G , x , c) is accepted.

◮ If (G , x) /∈ L :

∀c, (G , x , c) is rejected.



Proof-labeling schemes
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Proof-labeling schemes
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Error-sensitivity

of proof-labeling schemes



One node to reject



More nodes to reject



Distance

d((G , x1), (G , x2)) = #{v : x1(v) 6= x2(v)}



Distance
Distance=3

d((G , x1), (G , x2)) = #{v : x1(v) 6= x2(v)}



Distance

Language L

d((G , x),L) = min
(G ′,x ′)∈L

d((G , x), (G ′, x ′))



Error-sensitivity
in words

A PLS is error-sensitive if

the number of rejecting nodes

grows linearly with the distance.



Error-sensitivity
with a formula

A PLS is error-sensitive if
there exists α > 0 s.t.,

for all (G , x), for all certificate :

#{Rejecting nodes} ≥ α·d((G , x),L)



Examples



Acyclicity problems
Adjacency lists Pointers

Spanning
forest

Spanning
tree
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Spanning forest
with pointers
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Spanning forest
with pointers
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Spanning forest
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Spanning forest
with pointers

Spanning forest with pointers
has an error-sensitive PLS.
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Spanning tree
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Spanning tree
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Spanning tree
with pointers



Spanning tree
with pointers



Spanning tree
with pointers



Spanning tree
with pointers

Spanning tree with pointers

has no error-sensitive PLS
(for any certificate size).



Structural characterization



Theorem

A language L admits
an error-sensitive PLS

⇔

L is locally stable



Local stability
Hybridization

+

↓ ∈ L



Local stability
Boundary nodes



Local stability

L is locally stable if :

∃β,∀G ,∀ hybridization,

d( , L) ≤ β ·#{ }

d(hybrid,L) ≤ β ·#{Boundary nodes}



Spanning tree
with pointers

is not locally stable



Spanning tree
with adjacency lists

is locally stable



Acyclicity problems
Adjacency lists Pointers

Spanning
forest

Spanning
tree



Spanning tree
with adjacency lists

∈ L



Spanning tree
with adjacency lists
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Spanning tree
with adjacency lists



With adjacency lists

Thm : With adjacency lists,
spanning tree and minimum

spanning tree, are locally stable.

⇒ they have error-sensitive PLS.



Compact schemes



Compact PLS

Theorem (Korman et al.) :

◮ ST has a O(log n)-PLS ;

◮ MST has a O(log2n)-PLS.



Compact PLS

New Theorem :(

◮ ST has a O(log n)-ESPLS ;

◮ MST has a O(log2n)-ESPLS.



Open problem

Does error-sensitivity always come for free

(when achievable) ?


