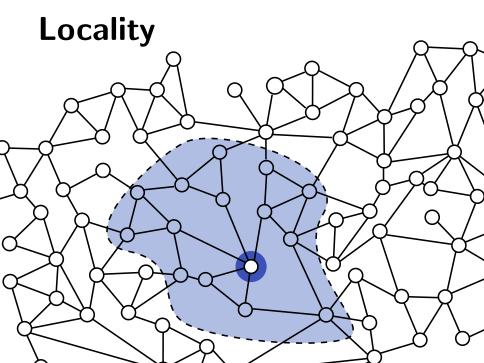
Error-sensitive proof-labeling schemes

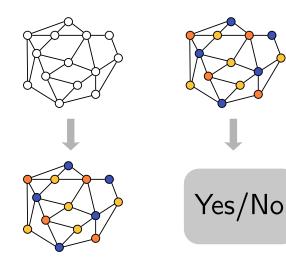
Laurent Feuilloley joint work with Pierre Fraigniaud Université Paris Diderot

2017



Distributed decision

Building vs. deciding

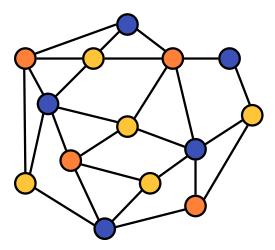


Distributed languages

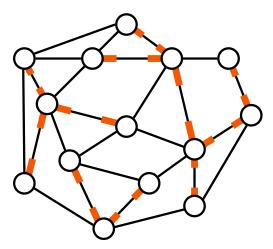
Context :

- ► Communication graph G
- Node inputs, $x : v \mapsto x(v)$

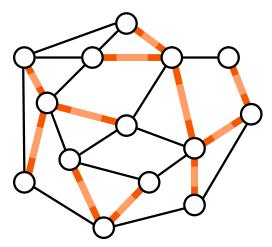
A language is a set of configurations (G, x)s.t. $\forall G, \exists x, (G, x) \in \mathcal{L}$



 $\mathcal{L} = \{(G, x) \text{ s.t. } x \text{ is a proper coloring of } G\}$



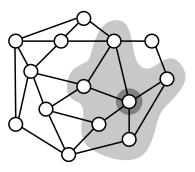
 $\mathcal{L} = \{(G, x) \text{ s.t. } x \text{ describes a spanning forest of } G\}$



 $\mathcal{L} = \{(G, x) \text{ s.t. } x \text{ describes a spanning forest of } G\}$

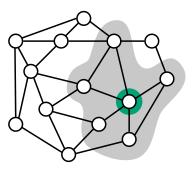
Every node :

- gathers its
 1-neighbourhood
- outputs a local decision accept or reject.



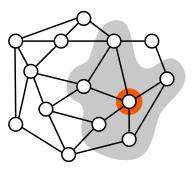
Every node :

- gathers its
 1-neighbourhood
- outputs a local decision accept or reject.

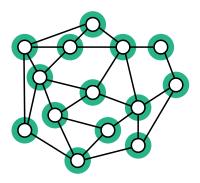


Every node :

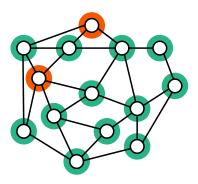
- gathers its
 1-neighbourhood
- outputs a local decision accept or reject.



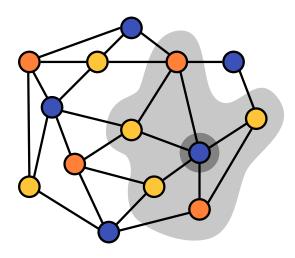
(G, x) is accepted if all node accept.

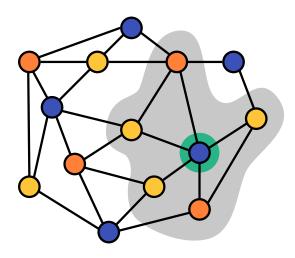


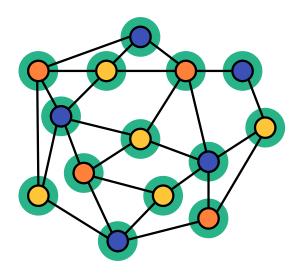
(G, x) is rejected if at least one node rejects.

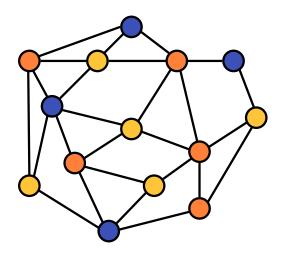


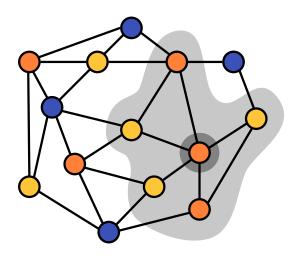


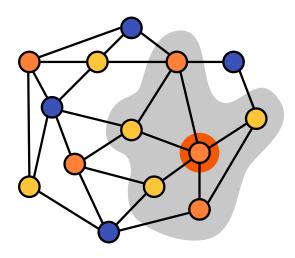


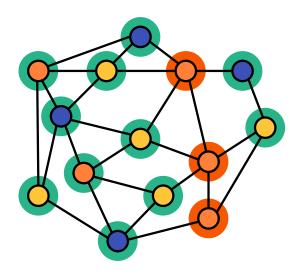


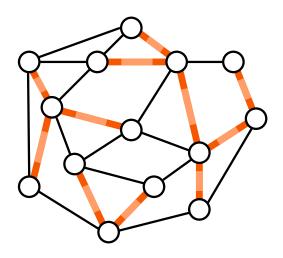


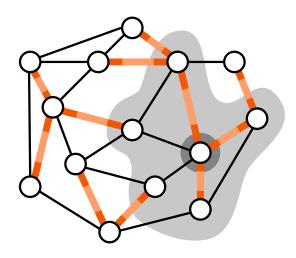


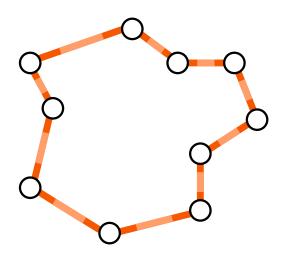


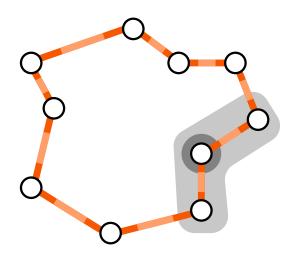




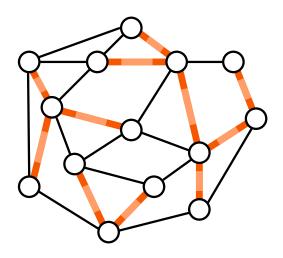


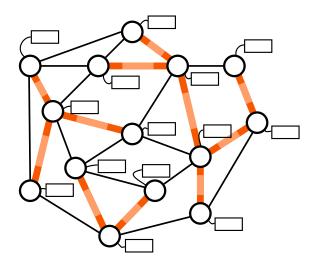


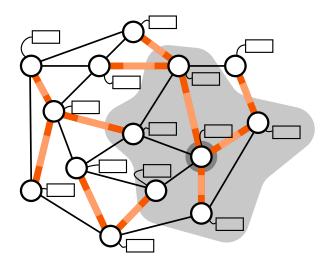




Distributed non-determinism

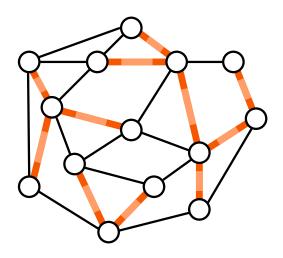


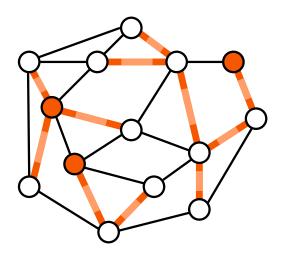


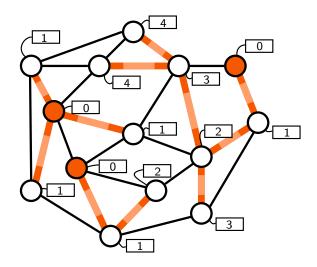


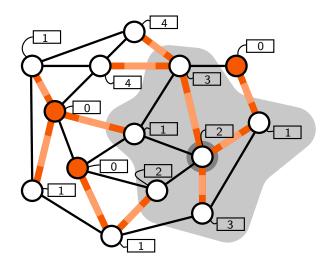
Given a proof-labeling scheme for $\boldsymbol{\mathcal{L}}$:

For all (G, x): • If $(G, x) \in \mathcal{L}$: $\exists c \text{ s.t. } (G, x, c) \text{ is accepted.}$ • If $(G, x) \notin \mathcal{L}$: $\forall c, (G, x, c) \text{ is rejected.}$



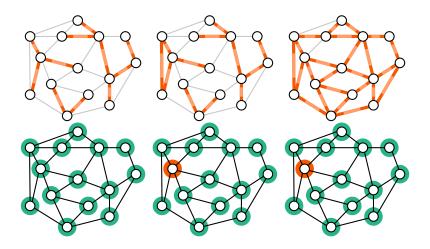




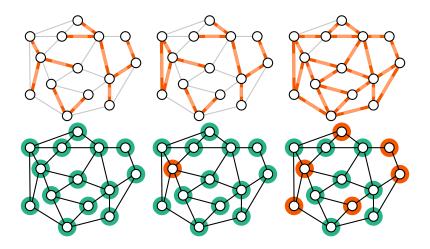


Error-sensitivity of proof-labeling schemes

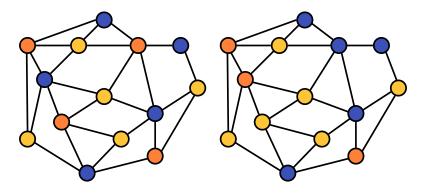
One node to reject



More nodes to reject

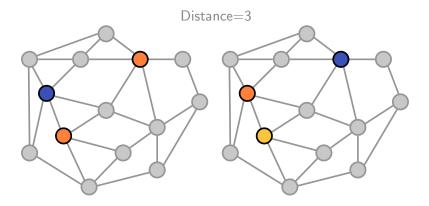


Distance



 $d((G, x_1), (G, x_2)) = \#\{v : x_1(v) \neq x_2(v)\}$

Distance



 $d((G, x_1), (G, x_2)) = \#\{v : x_1(v) \neq x_2(v)\}$

Distance



 $d((G,x),\mathcal{L}) = \min_{(G',x')\in\mathcal{L}} d((G,x),(G',x'))$

Error-sensitivity

in words

A PLS is error-sensitive if the number of rejecting nodes grows linearly with the distance.

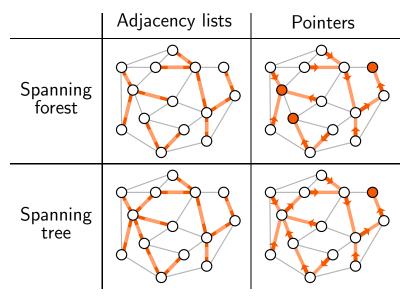
Error-sensitivity with a formula

A PLS is error-sensitive if there exists $\alpha > 0$ s.t., for all (G, x), for all certificate :

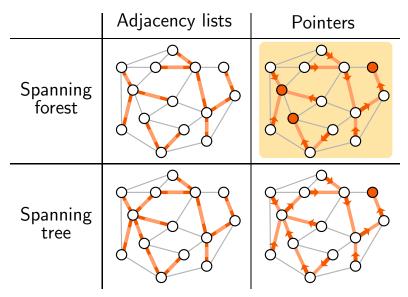
 $\#\{\text{Rejecting nodes}\} \ge \alpha \cdot d((G, x), \mathcal{L})$

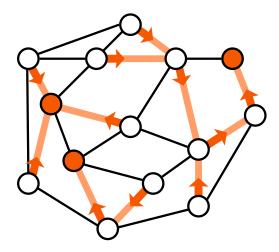
Examples

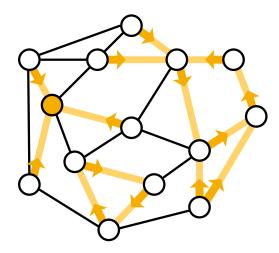
Acyclicity problems

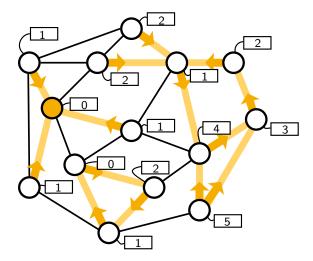


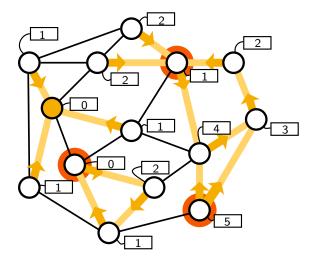
Acyclicity problems

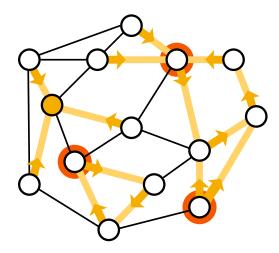


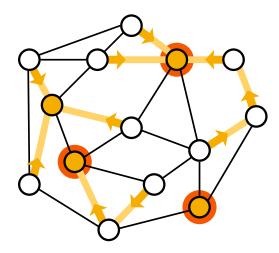


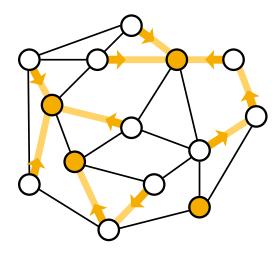






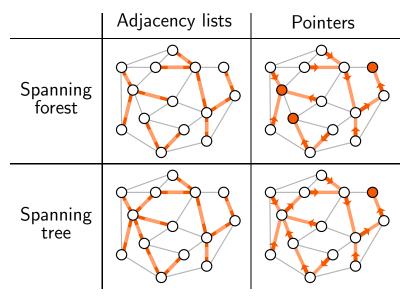




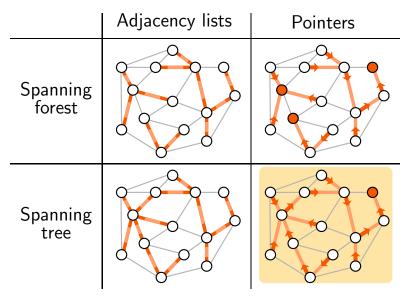


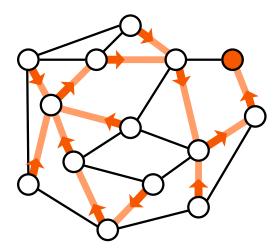
Spanning forest with pointers has an error-sensitive PLS.

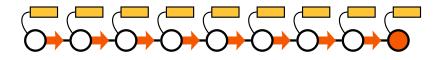
Acyclicity problems

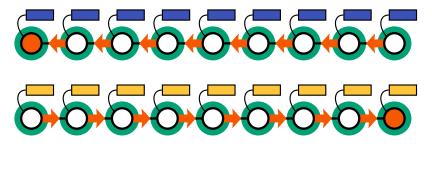


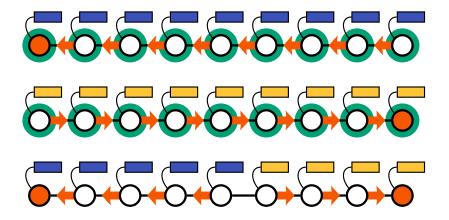
Acyclicity problems

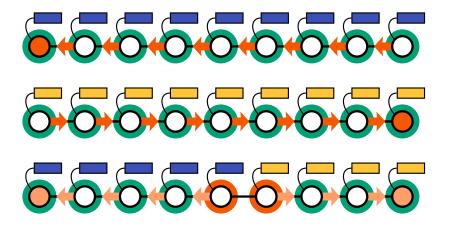








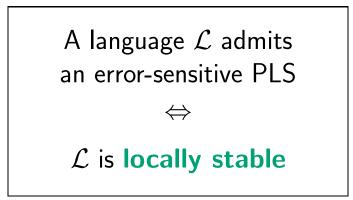




Spanning tree with pointers has no error-sensitive PLS (for any certificate size).

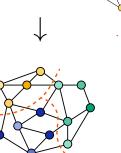
Structural characterization

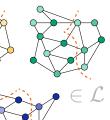
Theorem



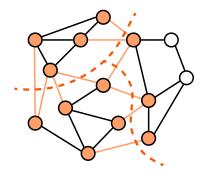
Local stability

Hybridization





Local stability Boundary nodes



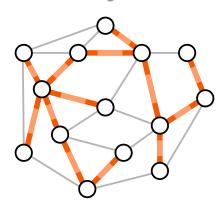
Local stability

\mathcal{L} is locally stable if : $\exists \beta, \forall G, \forall$ hybridization, $d(\bigcirc, \mathcal{L}) \leq \beta \cdot \#\{\bigtriangledown\}$

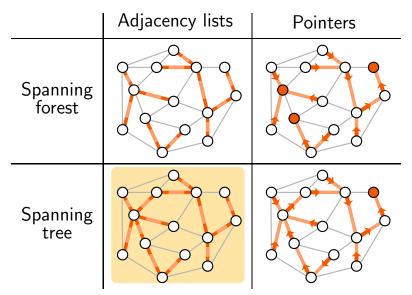
 $d(\text{hybrid}, \mathcal{L}) \leq \beta \cdot \#\{\text{Boundary nodes}\}$

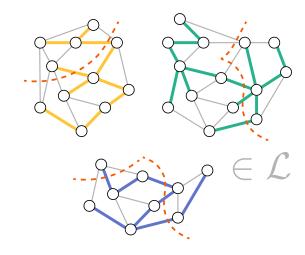
Spanning tree with pointers is not locally stable

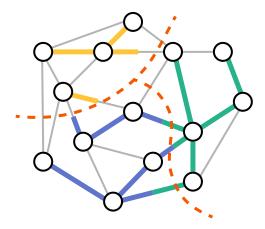
Spanning tree with adjacency lists is locally stable

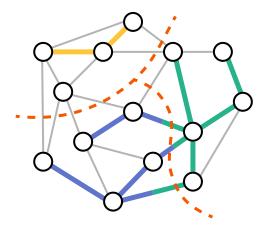


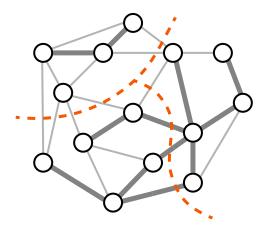
Acyclicity problems











With adjacency lists

Thm : With adjacency lists, spanning tree and minimum spanning tree, are locally stable.

 \Rightarrow they have error-sensitive PLS.

Compact schemes

Compact PLS

Theorem (Korman et al.) : ST has a O(log n)-PLS; MST has a O(log²n)-PLS.

Compact PLS

New Theorem : ► ST has a O(log n)-ESPLS; ► MST has a O(log²n)-ESPLS.

Open problem

Does error-sensitivity always come for free (when achievable)?