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The LOCAL model

� Computation model : a network of machines

� For every vertex, a unique identifier
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The LOCAL model

Minimize time = Localize computation



Complexity measures

The neighbourhoods are balls of potentially different
radiuses.
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Complexity measures

� Classic complexity : maximum radius

� Average complexity : average of the radiuses



Do I have the biggest identifier ?
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Do I have the biggest identifier ?

1 5 4 7 6 2 3

Maximum ∈ Ω(n)

Average ∈ O(log(n))



3-coloring of the ring

Theorem (Linial) :
The (classic) complexity of 3-coloring is in Θ(log∗n).

1 5 4 7 6 3 2

Maximum ∈ Ω(log∗n)

Average : ? ?



3-coloring of the ring

Theorem : The average complexity of
3-coloring is in Θ(log∗n).



A glimpse of the proof

We consider minimal algorithms.
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