Locally optimal load balancing

Laurent Feuilloley Université Paris Diderot

November 23, 2015 · Journées du GT CoA

Joint work with:

Jukka Suomela

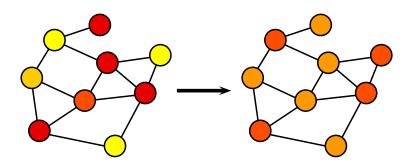
Juho Hirvonen

The paper appeared in DISC 2015, and is available on Arxiv.

Load Balancing

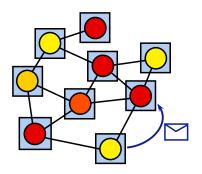
Input: a network and loads

Task: balance the load.



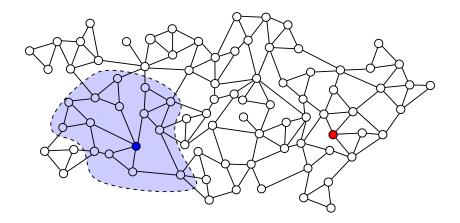
Network distributed computing

The input graph is the communication graph.



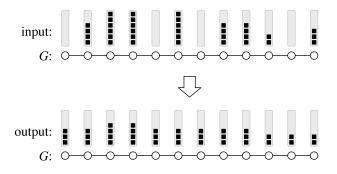
Locality

Limited number of rounds of communication is equivalent to Local vision of the graph.



Locally optimal load balancing

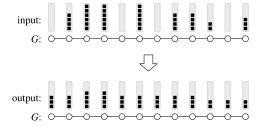
Locally optimal: two adjacent nodes have a load difference of at most one.



The distribution is smooth.

Three remarks

- Two versions: fractional and integral.
- For this talk the graph is a line.
- Maximum load L



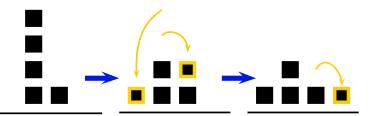
What we want

We look for algorithms that are :

- deterministic
- very local : complexity independent of the number of nodes n.

Algorithm 1 : Match-and-balance

Until it is locally optimal:
Balance the load between neighbours;

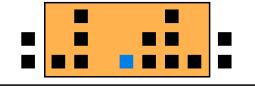


Algorithm 1 : Match-and-balance

How to balance? \rightarrow Actually all the balancing policies are slow.

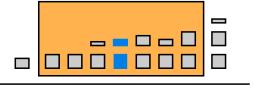
Algorithm 2 : Sliding window

Smoothing with an averaging sliding window.



Algorithm 2 : Sliding window

Smoothing with an averaging sliding window.

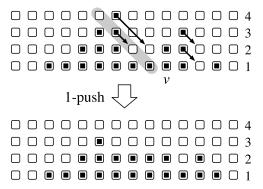


Algorithm 2 : Sliding window

Smoothing with an averaging sliding window.

- \rightarrow Works only in the fractional setting
 - → Is oblivious, and then cannot be generalised to general graphs.

Push along the descending diagonals, In one direction, then in the other.

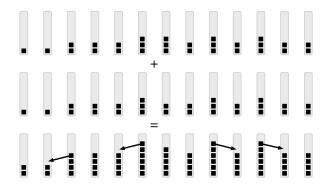


How to simulate a global orientation?

 \rightarrow At every node :

Divide the loads into two parts Manage two parallel instances (Tokens $0 \to 1$ and $1 \to 0$) Recombine the two instances.

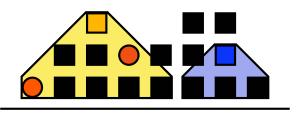
Recombining 3-stable configurations



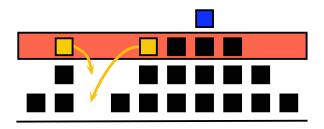
 \rightarrow Optimal complexity on the path : O(L).

→ But difficult to generalise to bounded degree graphs.

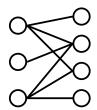
The notion of stable cone.



For level i from L down to 0:
 For every token at the level i :
 If it is stable, do not move it.
 If it is unstable, try to place it in a free position of its cone.



Try to place it in a free position \rightarrow bipartite maximal matching (BMM) in a graph of degree order of $\Theta(L\Delta^L)$.



Free positions

Unstable tokens

BMM with maximum degree d:

- Exact complexity unknown
- In the discrete case : O(d) (tight?) .
- In the fractional case : approximate BMM in $O(\log(d))$

For locally load balancing:

$$ightarrow \mathcal{O}(L^3\log(\Delta))$$
 in the fractional case

$$ightarrow O(\Delta^L L^3)$$
 in the discrete case

Wrap-up and questions

```
→ For the line : \Theta(L).

→ For bounded degree graphs :

fractional : poly(\Delta, L)

discrete : \Delta^L poly(L), optimal?
```

 \rightarrow Is BMM really in $\Theta(d)$?