Locally optimal load
balancing

Laurent Feuilloley
Université Paris Diderot

November 23, 2015 - Journées du GT CoA



Joint work with :

Jukka Suomela Juho Hirvonen

The paper appeared in DISC 2015, and is available on Arxiv.



Load Balancing

Input : a network and loads
Task : balance the load.



Network distributed computing

The input graph is the communication graph.

@,
7\

e
®
& =




Locality

Limited number of rounds of communication
is equivalent to
Local vision of the graph.




Locally optimal load balancing

Locally optimal : two adjacent nodes have a
load difference of at most one.

5
=]

[=1

iz

([T 1]

The distribution is smooth.



Three remarks

« Two versions : fractional and integral.
o For this talk the graph is a line.

e Maximum load L




What we want

We look for algorithms that are :
e deterministic

o very local : complexity independent of the
number of nodes n.



Algorithm 1 : Match-and-balance

Until it is locally optimal:
Balance the load between neighbours;

H

H

| , E=: _, H
H B = B HEE=




Algorithm 1 : Match-and-balance

How to balance?

— Actually all the balancing policies are
slow.



Algorithm 2 : Sliding window

Smoothing
with an averaging sliding window.




Algorithm 2 : Sliding window

Smoothing
with an averaging sliding window.

O0oa




Algorithm 2 : Sliding window

Smoothing

with an averaging sliding window.

— Works only in the fractional setting

— |s oblivious, and then cannot be
generalised to general graphs.



Algorithm 3 : Push algorithm

Push along the descending diagonals,
In one direction, then in the other.

O00®mOOCO0O000Oo
O0® DD[EL\DD
D@@@DD@@‘DD
EEE@E@ @0 ®

1-push @ '

0O00000oo0ooao
O0®s0O00000
Oo@ww@0®
ORONONCRORCRORORC)

0000
0O0o0oao
mOoO0O0o
0O000o
—_ 0w A

0000
0O0o0oao
mOoO0O0o
mOoO00
0O000o
— N W A



Algorithm 3 : Push algorithm

How to simulate a global orientation ?

— At every node :

Divide the loads into two parts
Manage two parallel instances
(Tokens 0 — 1 and 1 — 0)

Recombine the two instances.



Algorithm 3 : Push algorithm

Recombining 3-stable configurations



Algorithm 3 : Push algorithm

— Optimal complexity on the path : O(L).

— But difficult to generalise to bounded
degree graphs.



Algorithm 4 : Cone algorithm

The notion of stable cone.

TN




Algorithm 4 : Cone algorithm

For level / from L down to O:
For every token at the level / :
If it is stable, do not move it.
If it is unstable, try to place it in a free
position of its comne.

H
L my N
= EEEEE
HE EEEEEER




Algorithm 4 : Cone algorithm

Try to place it in a free position
— bipartite maximal matching (BMM) in a
graph of degree order of O(LAL).

Free positions Unstable tokens



Algorithm 4 : Cone algorithm

BMM with maximum degree d :
o Exact complexity unknown
e In the discrete case : O(d) (tight?) .

e In the fractional case : approximate BMM

in O(log(d))



Algorithm 4 : Cone algorithm

For locally load balancing :

— O(L3log(A)) in the fractional case
— O(ALL3) in the discrete case



Wrap-up and questions

— For the line : ©(L).
— For bounded degree graphs :
fractional : poly(A, L)

discrete : Alpoly(L), optimal ?
— |Is BMM really in ©(d)?



