
Locally optimal load
balancing

Laurent Feuilloley
Université Paris Diderot

November 23, 2015 · Journées du GT CoA



Joint work with :

Jukka Suomela Juho Hirvonen

The paper appeared in DISC 2015, and is available on Arxiv.



Load Balancing

Input : a network and loads

Task : balance the load.
b

b



Network distributed computing

The input graph is the communication graph.



Locality
Limited number of rounds of communication

is equivalent to

Local vision of the graph.



Locally optimal load balancing
Locally optimal : two adjacent nodes have a
load difference of at most one.

The distribution is smooth.



Three remarks

� Two versions : fractional and integral.

� For this talk the graph is a line.

� Maximum load L



What we want

We look for algorithms that are :

� deterministic

� very local : complexity independent of the

number of nodes n.



Algorithm 1 : Match-and-balance

Until it is locally optimal:
Balance the load between neighbours;



Algorithm 1 : Match-and-balance

How to balance ?

→ Actually all the balancing policies are
slow.



Algorithm 2 : Sliding window

Smoothing

with an averaging sliding window.



Algorithm 2 : Sliding window

Smoothing

with an averaging sliding window.



Algorithm 2 : Sliding window

Smoothing

with an averaging sliding window.

→ Works only in the fractional setting

→ Is oblivious, and then cannot be
generalised to general graphs.



Algorithm 3 : Push algorithm

Push along the descending diagonals,

In one direction, then in the other.



Algorithm 3 : Push algorithm

How to simulate a global orientation ?

→ At every node :
Divide the loads into two parts
Manage two parallel instances
(Tokens 0 → 1 and 1 → 0)
Recombine the two instances.



Algorithm 3 : Push algorithm

Recombining 3-stable configurations



Algorithm 3 : Push algorithm

→ Optimal complexity on the path : O(L).

→ But difficult to generalise to bounded
degree graphs.



Algorithm 4 : Cone algorithm

The notion of stable cone.



Algorithm 4 : Cone algorithm

For level i from L down to 0:

For every token at the level i :

If it is stable, do not move it.

If it is unstable, try to place it in a free

position of its cone.



Algorithm 4 : Cone algorithm

Try to place it in a free position

→ bipartite maximal matching (BMM) in a

graph of degree order of Θ(L∆L).

Free positions Unstable tokens



Algorithm 4 : Cone algorithm

BMM with maximum degree d :

� Exact complexity unknown

� In the discrete case : O(d) (tight ?) .

� In the fractional case : approximate BMM

in O(log(d))



Algorithm 4 : Cone algorithm

For locally load balancing :

→ O(L3 log(∆)) in the fractional case

→ O(∆LL3) in the discrete case



Wrap-up and questions

→ For the line : Θ(L).

→ For bounded degree graphs :

fractional : poly(∆, L)

discrete : ∆Lpoly(L), optimal ?
→ Is BMM really in Θ(d) ?


