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Load Balancing

Input : a network and loads
Task : balance the load.



Network distributed computing

The input graph is the communication graph.
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Locality

Limited number of rounds of communication
is equivalent to
Local vision of the graph.




Locally optimal load balancing

Locally optimal : two adjacent nodes have a
load difference of at most one.
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The distribution is smooth.



Three remarks

« Two versions : fractional and integral.
o For this talk the graph is a line.

e Maximum load L




What we want

We look for algorithms that are :
e deterministic

o very local : complexity independent of the
number of nodes n.



Algorithm 1 : Match-and-balance

Until it is locally optimal:
Balance the load between neighbours;
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Algorithm 1 : Match-and-balance

How to balance?

— Actually all the balancing policies are
slow.



Algorithm 2 : Sliding window

Smoothing
with an averaging sliding window.




Algorithm 2 : Sliding window

Smoothing
with an averaging sliding window.
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Algorithm 2 : Sliding window

Smoothing

with an averaging sliding window.

— Works only in the fractional setting

— |s oblivious, and then cannot be
generalised to general graphs.



Algorithm 3 : Push algorithm

Push along the descending diagonals,
In one direction, then in the other.
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Algorithm 3 : Push algorithm

How to simulate a global orientation ?

— At every node :

Divide the loads into two parts
Manage two parallel instances
(Tokens 0 — 1 and 1 — 0)

Recombine the two instances.



Algorithm 3 : Push algorithm

Recombining 3-stable configurations



Algorithm 3 : Push algorithm

— Optimal complexity on the path : O(L).

— But difficult to generalise to bounded
degree graphs.



Algorithm 4 : Cone algorithm

The notion of stable cone.
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Algorithm 4 : Cone algorithm

For level / from L down to O:
For every token at the level / :
If it is stable, do not move it.
If it is unstable, try to place it in a free
position of its comne.
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Algorithm 4 : Cone algorithm

Try to place it in a free position
— bipartite maximal matching (BMM) in a
graph of degree order of O(LAL).

Free positions Unstable tokens



Algorithm 4 : Cone algorithm

BMM with maximum degree d :
o Exact complexity unknown
e In the discrete case : O(d) (tight?) .

e In the fractional case : approximate BMM

in O(log(d))



Algorithm 4 : Cone algorithm

For locally load balancing :

— O(L3log(A)) in the fractional case
— O(ALL3) in the discrete case



Wrap-up and questions

— For the line : ©(L).
— For bounded degree graphs :
fractional : poly(A, L)

discrete : Alpoly(L), optimal ?
— |Is BMM really in ©(d)?



