How long it takes for an ordinary node with an ordinary ID to output?

Laurent Feuilloley Université Paris Diderot

SIROCCO · June 2017

The network

When to output?

OutputsSimultaneousNon-simultaneousn knownYesNot requiredCompute t(n),Increase radius,Algorithmcheck t(n)-view,
output.until enough info,
output.

When to output?

OutputsSimultaneousNon-simultaneousn knownYesNot requiredn knownYesNot requiredAlgorithmCompute t(n),
run t(n) rounds,
output,
stop.Run until enough info,
output,
continue to run,
stop.

Given a graph G, and an ID assignment :

Given a graph G, and an ID assignment :

$$\max_{G} \max_{IDs} \frac{1}{n} \sum_{v \in G} t(v)$$

Leader election

Leader election : exactly one node is selected.

Leader election

Leader election : exactly one node is selected.

For each node :

- increase the radius until you see a larger ID
- if such an ID exists, then output *non-leader*
- else output *leader*.

An exponential gap

Ordinary node	Ordinary node	Slowest node
best ID assign.	worst ID assign.	any ID assign.
<i>O</i> (1)	$O(\log n)$	$\Omega(n)$

Local problem :

Typical local problem :

Colouring

Typical global problem : Leader election

No gap for local problems

Example of application :

Thm [Linial] : For 3-colouring a cycle, the slowest node requires $\Omega(\log^* n)$ rounds.

Thm [this paper] : For 3-colouring a cycle, an ordinary node requires $\Omega(\log^* n)$ rounds.

Roadmap of the proof

$\rightarrow \frac{n}{w(n)}$ nodes with w(n) radius

$$\max_{G} \max_{IDs} \frac{1}{n} \sum_{v \in G} t(v)$$

$$\max_{G} \max_{IDs} \frac{1}{n} \sum_{v \in G} t(v)$$

Random IDs

$$\max_{G} \frac{1}{|IDs|} \sum_{IDs} \max_{v \in G} t(v)$$

Random IDs

Random ID Assignment

Randomized algorithm

Random $O(\log n)$ ID assign.

Random $O(\log n)$ numbers

Uniqueness

Independance

Random IDs

Whp. *n* random numbers from $[n^4]$ are distinct.

Ordinary node and ID

$$\max_{G} \frac{1}{|IDs|} \sum_{IDs} \frac{1}{n} \sum_{v \in G} t(v)$$

Ordinary node and ID

3-colouring of a cycle	Worst ID assign.	Random ID assign.
Slowest node	$\Theta(\log^* n)$	$\Theta(\log^* n)$
Ordinary node	$\Theta(\log^* n)$	$\Theta(1)$