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When to output ?

Outputs Simultaneous Non-simultaneous

n known Yes Not required

Algorithm

Compute t(n),
check t(n)-view,
output.
dummy

Increase radius,
until enough info,
output.
dummy



When to output ?

Outputs Simultaneous Non-simultaneous

n known Yes Not required

Algorithm

Compute t(n),
run t(n) rounds,
output,
stop.

Run until enough info,
output,
continue to run,
stop.



Complexity measures

Given a graph G , and an ID assignment :

Slowest node :

max
v∈G

t(v)

Ordinary node :

1

n

∑

v∈G

t(v)
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Complexity measures

Complexity of a problem :

max
G

max
IDs

1

n

∑

v∈G

t(v)



Leader election

Leader election : exactly one node is selected.



Leader election

Leader election : exactly one node is selected.



An algorithm for L.E.

For each node :

• increase the radius until you see a larger ID

• if such an ID exists, then output non-leader

• else output leader.



An algorithm for L.E.
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An exponential gap

Ordinary node

best ID assign.

Ordinary node

worst ID assign.

Slowest node

any ID assign.

O(1) O(log n) Ω(n)



Local problems

Local problem :

Locally correct
everywhere
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Local problem :

Locally correct
everywhere



Local problems

Typical local

problem :

Colouring

Typical global
problem :

Leader election



No gap for local problems

Example of application :

Thm [Linial] : For 3-colouring a cycle, the slowest node requires
Ω(log∗ n) rounds.

Thm [this paper] : For 3-colouring a cycle, an ordinary node
requires Ω(log∗ n) rounds.



Roadmap of the proof

Many high radiuses

s

Smoothness

No gap



Proof : many high radiuses
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Proof : many high radiuses

→ n

w(n) nodes with w(n) radius
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Random IDs

Complexity of a problem :

max
G

1

|IDs|

∑

IDs

max
v∈G

t(v)



Random IDs

Random ID Assignment Randomized algorithm

Random O(log n) ID assign. Random O(log n) numbers

Uniqueness Independance



Random IDs

Whp. n random numbers from [n4] are distinct.

Random numbers

Distinct random numbers



Ordinary node and ID

Complexity of a problem :

max
G

1

|IDs|

∑

IDs

1

n

∑

v∈G

t(v)



Ordinary node and ID

3-colouring

of a cycle
Worst ID assign. Random ID assign.

Slowest node

Ordinary node

Θ(log∗ n) Θ(log∗ n)

Θ(log∗ n) Θ(1)


