Randomized Local Network Computing

Laurent Feuilloley¹ · Pierre Fraigniaud²

¹ENS Cachan · Université Paris Diderot · Aalto University ²Université Paris Diderot

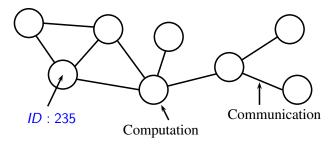
SPAA 2015 \cdot Portland \cdot June 15

A derandomization theorem

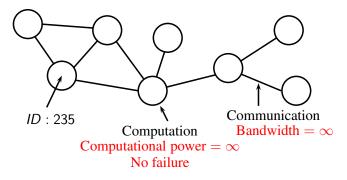
Informally our theorem is :

- In a distributed computing model
- If a language can be checked locally with randomization
- Then :
 - If it can be constructed locally with randomization
 - Then it can be constructed locally without randomization

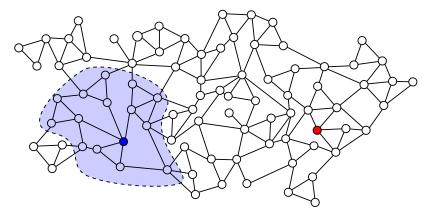
- A network of machines
- Every vertex has a unique identifier



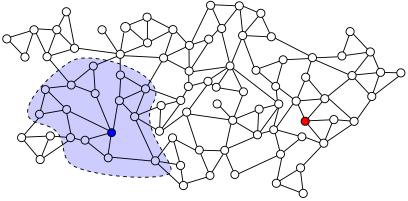
- A network of machines
- Every vertex has a unique identifier



First point of view : minimize the number of rounds



Second point of view : local computation



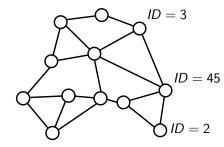
max degree = Δ

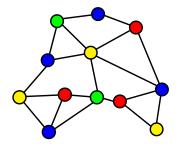
Theorem

- In the LOCAL model
- If a language can be checked locally with randomization
- Then :
 - If it can be constructed locally with randomization
 - Then it can be constructed locally without randomization

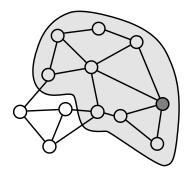
 $\mathsf{Example}: (\Delta+1)\mathsf{-coloring}$

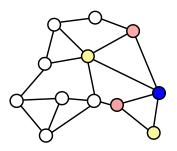
Construction from a global perspective.





Construction from a local perspective.

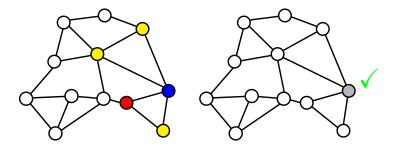




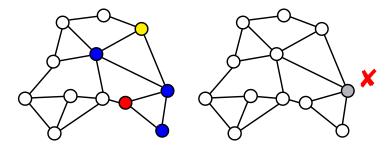
Theorem (Linial'92) :

Constructing a $(\Delta + 1)$ -colouring requires $\Omega(\log^* n)$ rounds.

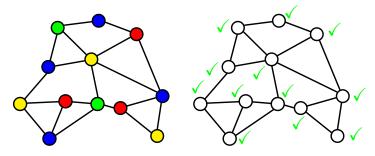
Decision from a local perspective



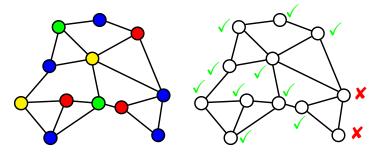
Decision from a local perspective



Decision from a global perspective



Decision from a global perspective

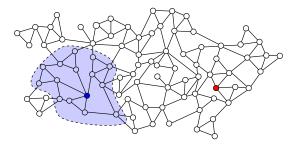


Theorem

- In the LOCAL model
- If a language can be checked locally with randomization
- Then :
 - If it can be constructed locally with randomization
 - Then it can be constructed locally without randomization

Locally?

Here locally means constant number of rounds



Coloring verification can be done locally $\rightarrow 1$ round, but coloring construction cannot $\rightarrow \log^* n$ rounds.

Locally?

What can be constructed locally?

 $\rightarrow\,$ Weak coloring, fractional coloring, and some approximations

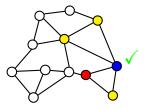
Theorem

- In the LOCAL model
- If a language can be checked in O(1) rounds, with randomization
- Then :
 - If it can be constructed in O(1) rounds with randomization
 - Then it can be constructed in O(1) rounds without randomization

Languages and classes

- a language : is a set
 - $\{(G, x) \text{ satisfying a property P } \}$
- A class is a set of languages

 \rightarrow LD = the languages that can be checked in constant time deterministically.



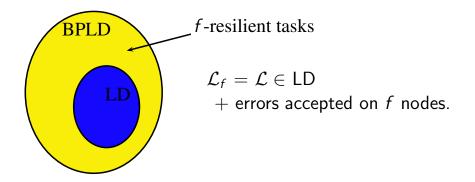
Languages and classes

 BPLD = the languages that can be checked in constant time using randomization.

More precisely : there exists a checker, and $p \in \left(\frac{1}{2}, 1\right]$ s.t. :

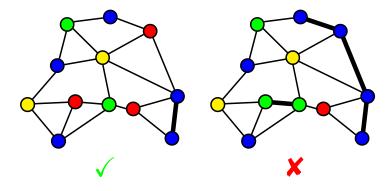
- If $(G, x) \in \mathcal{L}$, then $\Pr[all \text{ nodes accept}] \ge p$
- If $(G, x) \notin \mathcal{L}$ then $\Pr[a \text{ node rejects}] \geq p$

f-resilient tasks and BPLD



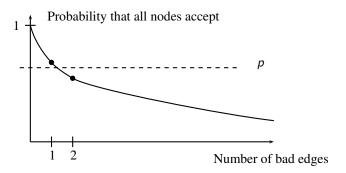
f-resilient tasks and BPLD

Coloring with one bad edge is ok, but not more.



f-resilient tasks and BPLD

- If the coloring is good, accept
- Strategy :
- If the coloring is bad, reject with probability q



Back to the derandomization theorem

More formally the theorem is :

- In the LOCAL model
- $\bullet \ \textbf{If} \ \mathcal{L} \in \mathsf{BPLD}$
- Then :
 - If \mathcal{L} can be constructed in O(1) rounds with randomization
 - Then it can be constructed in O(1) rounds deterministically

A glimpse of the proof

Two main steps :

- Using Ramsey theory to reduce to a special case (from Naor-Stockmeyer'93)
- Proving that locality prevent weird correlations

Further works

- LD \rightarrow BPLD \rightarrow ?
- Get a better understanding of randomization in network distributed computing.

Further works

- LD \rightarrow BPLD \rightarrow ?
- Get a better understanding of randomization in network distributed computing.

Thank you!