

A HIERARCHY OF LOCAL DECISION

Laurent Feuilloley (feuilloley@irif.fr) Based on *A hierarchy of local decision* presented at ICALP 2016, joint work with Pierre Fraigniaud and Juho Hirvonen.

Aalto University

DISTRIBUTED GRAPH ALGORITHMS

A distributed graph algorithm is an algorithm that every node of a network will run to compute a solution to a graph problem. The nodes have the knowledge of a small neighbourhood only which, in this poster, is a constant radius ball.

LOCAL DECISION

Most of the literature \rightarrow computing something, e.g. a colouring

Local decision \rightarrow deciding properties, e.g. acyclicity of the graph.

Goal: study complexity classes of decision problems (see *Survey of distributed decision* by F& F).

Decision mecanism: the graph is accepted if and only if all the nodes accept locally.

LEVEL 0: LOCALLY DECIDABLE

LEVEL 1: LOCALLY VERIFIABLE

LEVEL k: LOCAL HIERARCHY

We consider languages, that are sets of graphs (*G*), with inputs on the nodes $(x_v, v \in V(G))$. For example, let $\mathcal{L}_{3\text{-colored}}$ be the language of the coloured graphs such that the colouring is a proper 3-colouring.

A language is locally decidable if the nodes can decide locally if the network belongs to it, using the above mechanism.

EXAMPLE

The language $\mathcal{L}_{3\text{-colored}}$ is locally decidable.

Locally checkable proof = a function that assigns to each node of the graph a label. As the certificates in sequential non-determinism, it is a proof that the instance is correct. It must be verifiable locally.

• Before: analogue of P and NP.

• This work: analogue of the polynomial hierarchy

• Idea: a prover and a disprover give labels to the nodes one after the other, to convince them respectively to accept and to reject the graph.

Classes Σ_p^L and Π_p^L

We define the classes Σ_p^L and Π_p^L . All the labels y have logarithmic size. $\mathcal{L} \in \Sigma_p^L$ if and only if

 $\mathcal{L} \in \Sigma_p^2$ if and only if $\exists A \in \mathbf{Cst-dist}$ such that for all G, x,

 $(G, x) \in \mathcal{L} \Leftrightarrow \exists y_1, \forall y_2, ..., Q_p y_p, A(G, x, y) = 1$

 $\mathcal{L} \in \Pi_p^L \text{ if and only if} \\ \exists A \in \mathbf{Cst-dist} \text{ such that for all } G, x, \\ (G, x) \in \mathcal{L} \Leftrightarrow \forall y_1, \exists y_2, ..., Q_p y_p, A(G, x, y) = 1$

EXAMPLE: OPTIMAL SOLUTIONS

EXAMPLE: LEADER

Language: graphs with exactly one leader (e.g. a node with a special flag). A locally checkable proof is shown below.

Dist(v,leader) ID of the leader

DEFINITION LD

We define the basic class of complexity, LD:

 $\mathcal{L} \in LD$ if and only if $\exists A \in \mathsf{Cst-dist} \text{ s.t. } \forall G, x, (G, x) \in \mathcal{L} \Leftrightarrow A(G, x) = 1$ where A(G, x) = 1 means $\forall v, A(G, x_v, v) = 1$

The analogue in the sequential setting is *P*:

 $\mathcal{L} \in P$ if and only if $\exists A \in \mathsf{Polytime}$ such that $\forall x, x \in \mathcal{L} \Leftrightarrow A(x) = 1$

REMARKS

• The nodes have distinct IDs. They can use them during the computation. The language should not depend on the IDs of

SIZE OF THE PROOFS

The labels can depend on IDs \hookrightarrow a $O(n^2)$ label encodes the graph \hookrightarrow any property can be decided.

Challenge: having small labels.

LOGLCP

We consider the class LogLCP, an analogue of NP:

 $\mathcal{L} \in \text{LogLCP}$ if and only if $\exists A \in \text{Cst-dist}$ such that for all $G, x, (G, x) \in \mathcal{L} \Leftrightarrow$ $\exists y$, with $|y| \in O(\log(n)), A(G, x, y) = 1$

 $\mathcal{L} \in NP$ if and only if $\exists A \in \text{Polytime}$ such that for all $x, x \in \mathcal{L} \Leftrightarrow \exists y$, with $|y| \in O(\text{poly}(n)), A(x, y) = 1$.

 $O(\log n)$

For many combinatorial problems, the set of optimal solutions is in Π_2^L . The protocol is on the right, with the disprover in red, and prover in blue.

"Pointer" to an error in the disprover certificate

EXAMPLE: NON TRIVIAL AUTOMORPHISM

 $\sigma: i \mapsto j$

Language: the graphs that have a non-trivial automorphism. This language has a protocol in Σ_3^L , described on the right.

An inconsistent pair (u, v)- $(\sigma(u), \sigma(v))$

"Pointer" to an error in the disprover certificate

STRUCTURAL RESULTS

• Collapses: $\Sigma_{2i} = \Sigma_{2i-1}$ and $\Pi_{2i+1} = \Pi_{2i}$. We rename the classes as Λ_i .

• There are interesting co-classes.

- The degree is not bounded: constant size neighbourhoods can be big.
- Local model: no limit on bandwidth or local computation.

IF IT RINGS A BELL

You may know the paper *What can be computed locally?* by Naor and Stockmeyer (1995), where a very similar class, called LCL, is defined.

LogLCP contains many languages: leader, acyclicity, colourability, and all the complement of languages in LD.

IF IT RINGS A BELL

Göös and Suomela defined locally checkable proofs in an eponymous paper. The basic concept is older, is called *proof labelling scheme* and has been studied by Korman, Kutten, Peleg and Masuzawa, among others.

• The levels 0, 1 and 2 are separated.

• There are languages outside the hierarchy.

OPEN PROBLEM

Are level 2 and 3 separated ?

IF IT RINGS A BELL

Reiter proved a connexion between a similar hierarchy and MSO logic. The same hierarchy but with no labels in the certificate has a poster at WoLA!