
 1 / 37

Introduction to
applied cryptography
– Lecture 2

Omar Hasan

 2 / 37

Books

● The content in the lectures is drawn from the following
books:

– Applied Cryptography, Second Edition – Bruce
Schneier

– An Introduction to Cryptography, version 8.0 – PGP
Corporation

 3 / 37

RSA

● A public-key cryptosystem named after its three
inventors—Ron Rivest, Adi Shamir, and Leonard Adleman.

● RSA supports authentication of the participants
(through digital signatures) as opposed to Diffie-Hellman,
which does not.

● RSA gets its security from the difficulty of factoring
large numbers.

● Recovering the plaintext from the public key and the
ciphertext is conjectured to be equivalent to factoring
the product of two primes.

 4 / 37

RSA

● Let e, d, n be positive integers, and p, q be prime
numbers, where n = pq, then:

– Public key: (e, n)

– Private key: (d, n)
● Encryption:

C = E(M) = M e (mod n)
● Decryption:

M = D(C) = C d (mod n)

 5 / 37

RSA

Key Generation: Public key

● Choose two random large prime numbers, p and q, of
equal length. p = 47 and q = 71.

● Compute n: n = pq n = 47 * 71 = 3337

● Compute φ: φ = (p – 1)(q – 1) φ = 46 * 70 = 3220

● Choose a random integer e, such that e and φ are
relatively prime. e = 79

– In other words: gcd(e, φ) = 1 gcd(79, 3220) = 1

– Where, gcd: greatest common divisor
● Public key: (e = 79, n = 3337)

GCD calculator: https://planetcalc.com/323/

 6 / 37

RSA

Key Generation: Private key

● Use the extended Euclidean algorithm to compute d, such
that: ed = 1 (mod φ)

– In other words: d = e -1 (mod φ)

d = 79 -1 (mod 3220) = 1019
● Private key: (d = 1019, n = 3337)

Extended Euclidean algorithm, modular multiplicative inverse calculator: https://planetcalc.com/3298/
Modular exponentiation: https://planetcalc.com/8979/

 7 / 37

RSA

Encryption

● The encryption function:

C = E(M) = M e (mod n)

Example

● M = 688

● Public key: (e = 79, n = 3337)

● Encryption:

C = E(688) = 688 79 (mod 3337) = 1570

 8 / 37

RSA

Decryption

● The decryption function:

M = D(C) = C d (mod n)

Example

● C = 1570

● Private key: (d = 1019, n = 3337)

● Decryption:

M = D(1570) = 1570 1019 (mod 3337) = 688

 9 / 37

RSA

Encryption of larger messages

● To encrypt a large message m, first break it into numerical
blocks smaller than n.

● If n has 100 digits, then each message block, mi, should
be under 100 digits long.

● The encrypted message, c, will be made up of similarly
sized message blocks, ci, of about the same length.

 10 / 37

RSA

Example

● To encrypt the message:

m = 6882326879666683

● First break it into small blocks. The message is split into
six blocks, mi :

m1 = 688

m2 = 232

m3 = 687

m4 = 966

m5 = 668

m6 = 003

 11 / 37

RSA

Example

● The first block is encrypted as

688 79 mod 3337 = 1570 = c1

● Performing the same operation on the subsequent blocks
generates an encrypted message:

c = 1570 2756 2091 2276 2423 158

 12 / 37

RSA

Decryption

● To decrypt the entire message, decrypt each encrypted
block ci.

Example

● Ciphertext:

c = 1570 2756 2091 2276 2423 158

● Decrypting the message requires performing
exponentiation using the decryption key of 1019, so

1570 1019 mod 3337 = 688 = m1

● The rest of the message can be recovered in this manner.

 13 / 37

RSA

Exercise

● Ciphertext:

c = 564 648 324 243 696 562 331 689

● Public key: (e = 11, n = 703)

● Private key: (d = 59, n = 703)

● The decryption function:

M = D(C) = C d (mod n)
● ASCII:

65 A 66 B 67 C 68 D 69 E
70 F 71 G 72 H 73 I 74 J
75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T
85 U 86 V 87 W 88 X 89 Y
90 Z

https://www.cs.drexel.edu/~jpopyack/IntroCS/HW/RSAWorksheet.html

 14 / 37

RSA

Solution

● 564 648 324 243 696 562 331 689

● 564 59 (mod 703) ….

● 71 89 77 78 65 83 69 66

● G Y M N A S E B

 15 / 37

Security of RSA

● The security of RSA depends on the problem of factoring
a large number, i.e. n, the product of p and q.

– Any adversary will have the public key, e, and the
modulus, n. To find the decryption key, d, he has to
factor n.

– n = pq; d = e-1 mod ((p - 1)(q – 1))

 16 / 37

Security of RSA

● It is also possible to attack RSA by guessing the value
of (p - 1)(q - 1). This attack is no easier than factoring n.

● A cryptanalyst can also try every possible d until he
stumbles on the correct one. This brute-force attack is
even less efficient than trying to factor n.

– m = c d mod n

 17 / 37

Security of RSA

Chosen Ciphertext Attack against RSA, Scenario 1

● Eve, listening in on Alice’s communications, manages to
collect a ciphertext message, c, encrypted with RSA in her
public key.

m = c d mod n
● To recover m, she first chooses a random number, r, such

that r is less than n. She gets Alice’s public key, e. Then
she computes

– x = r e mod n

– y = x c mod n

– t = r -1 mod n

● If x = r e mod n, then r = x d mod n.

 18 / 37

Security of RSA

● Now, Eve gets Alice to sign y with her private key, thereby
decrypting y.

● Alice sends Eve u = y d mod n

● Now, Eve computes:

– tu mod n

= r -1 y d mod n

= r -1 x d c d mod n

= c d mod n

= m

● Eve now has m.

 19 / 37

Security of RSA

Chosen Ciphertext Attack against RSA, Scenario 2

● Eve wants Alice to sign m3.

● She generates two messages, m1 and m2, such that:

– m3 = m1 m2 (mod n)

● If Eve can get Alice to sign m1 and m2, she can calculate
m3 :

– m3
 d = (m1

d mod n)(m2
d mod n)

● Moral: Never use RSA to sign a random document
presented to you by a stranger.

 20 / 37

Digital signatures

● A digital signature serves the same purpose as a
handwritten signature.

● However, a handwritten signature is easy to
counterfeit.

● A digital signature is superior to a handwritten signature
in that it is very hard to counterfeit.

● Moreover, a digital signature attests to the contents of
the information as well as to the identity of the signer.

 21 / 37

Digital signatures

● Instead of encrypting information using someone else’s
public key, you encrypt it with your private key.

● If the information can be decrypted with your public
key, then it must have originated with you.

 22 / 37

Digital signatures

● Public key digital signatures provide authentication,
data integrity, and non-repudiation.

● Authentication: Digital signatures let the recipient of
information verify the authenticity of the information’s
origin.

● Integrity: Digital signatures also allow verification that
the information was not altered while in transit.

● Non-repudiation: Digital signatures can prevent the
sender from claiming that he or she did not actually send
the information.

 23 / 37

Exercise

● Plaintext:

M = “MESSAGE” or just “M”

● RSA public key: (e = 11, n = 703)

● RSA private key: (d = 59, n = 703)

● Signing (encryption) and verifying (decryption) functions:

C = E(M) = M d (mod n); M = D(C) = C e (mod n)
● ASCII:

65 A 66 B 67 C 68 D 69 E
70 F 71 G 72 H 73 I 74 J
75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T
85 U 86 V 87 W 88 X 89 Y
90 Z

https://www.cs.drexel.edu/~jpopyack/IntroCS/HW/RSAWorksheet.html

Digital signatures

 24 / 37

Hash functions

● A one-way hash function takes variable-length input
— a message of any length, even thousands or millions of
bits.

● It then produces a fixed-length output, e.g., 256 bits.

● The hash function ensures that, if the input is changed
in any way — even by just one bit — an entirely
different output value is produced (avalanche effect).

● A hash function is efficiently computable. Computing
the hash of an n-bit string should have a running time
that is O(n).

● An application: hash tables

 25 / 37

Hash functions

By User:Jorge Stolfi based on Image:Hash_function.svg by Helix84 - Original work for Wikipedia, Public Domain, https://commons.wikimedia.org/w/index.php?curid=5290240

 26 / 37

Hash functions

An application:

● Using digital signatures without hash functions is slow,
and it produces an enormous volume of data—at least
double the size of the original information.

● PGP uses a cryptographically strong hash function on
the plaintext the user is signing. This generates a fixed-
length data item known as a message digest.

 27 / 37

Hash functions

● Then PGP uses the digest and the private key to create
the digital signature.

● PGP transmits the signature and the plaintext together.

● Upon receipt of the message, the recipient uses PGP to
recompute the digest, thus verifying the signature.

 28 / 37

Hash functions

29 / 37

Cryptographic hash function

● For a hash function to be cryptographically secure, it must

have the following additional properties:

1) Collision resistance

2) Hiding

30 / 37

Collision resistance

● A collision occurs when two distinct inputs produce the same

output.

● A hash collision. x and y are distinct values, yet when input into

hash function H, they produce the same output.

● Collision resistance: A hash function H is said to be collision

resistant if it is infeasible to find two values, x and y, such that

x ≠ y, yet H(x) = H(y).

31 / 37

Hiding

● If we are given the output of the hash function y = H(x), there is

no feasible way to determine the input, x.

● In order to be able to achieve the hiding property:

● No value of x should be particularly likely.

● That is, x has to be chosen from a large set.

32 / 37

Homomorphic Cryptosystems

Additive Homomorphic Cryptosystems:

• Product of ciphertexts  Sum of plaintexts

E(x) * E(y) = E(x + y)

E(3) * E(4) = E(3 + 4) = E(7)

33 / 37

Zero Knowledge Proofs (ZKP)

• A Prover convinces a Verifier that a statement is true

• No additional information is revealed

34 / 37

ZKP: Plaintext Equality
• Given two ciphertexts Eu(x) and Ev(x)

• User u proves: Both Eu(x) and Ev(x) encrypt x

• x is not revealed

ZKP: Set Membership
• Given a ciphertext Eu(x) and a public set S

• User u proves: x  S

• x is not revealed

35 / 37

Secret Sharing

• Split a secret into n shares: x1, x2, …, xn

• m  n users required to unlock the secret

• Send the shares to n users

a

u1 u2 un…u3

x1 xnx3x2

Secret

36 / 37

Secure Multiparty Computation

● There are n parties in a network. Each party has an input which

is private.

● The n parties wish to compute some joint function over their

inputs such that all inputs remain private, i.e., known only to

their owners.

● Security must be preserved in the face of adversarial behavior

by some of the participants, or by an external party.

37 / 37

Examples

Yao’s Millionaire Problem:
● Two millionaires, Alice and Bob, wish to learn which of them

is richer without revealing their individual wealth.

● Two private numbers x and y each belonging to a different

party, and the goal is to solve the inequality while preserving

the privacy of the inputs.

Private Sum, Product, etc.:
● n parties wish to compute some function such as sum or

product over their inputs such that all inputs remain private.

