Buffer Overflow Attack (AskCypert CLaaS)

Buffer Overflow.c code

1. int main(int arg c, char** argv)
{

char name[64];
printf(“Addr;%p\n”, name);
strecpy(name, argv([1]);
printf(“Arg[1] is:%s\n”, name);
return O

}

Comments for dummie® :

Nogaprpwd

o

- Line 3: creation of a variable, called name, oktyoray of char, size = 64 bytes
- Line 4: print the memory address where name igdtor

- Line 5: copy the string given as parameter of timefion into the variable name
- Line 6: print the content of the variable name

Terrrminad = wimntnEip 17251 43-60: =
Tesminal Tabs Help

ard® to s ch Tar « E
Oy r Lo, [i mbol fTound). dore,

Some notes and recalls about x64 assembly language

When the stack grows (e.g., when a call to a foncts done), addresses get smaller
(cf. instruction <+4> in the listing above : sutx$0, %rsp). That is, the bottom of the stack
has address = 2"64-1 ; the top of the stack hagssld 0

Syntax convention is just a nightmare as therevaey different conventions. There are 2
two main conventions: Intel convention, the origisgntax for x86 processors which is
dominant in the Windows world; and AT&T conventiapminant in the UNIX world.
Examples of differences (useful to understand tiiéeBOverflow code) :

(0]
(0]
(0]

Register referencing: %rsp (ATT) vs rsp (Intel)

Immediate values: $13 (ATT) vs 13 (Intel)

Parameter order : source first, destination se€dnd) vs destination first, source
second (Intel): mov $13, %rax (ATT) vs mov %rax,(IkBel) (store 13 in register
rax)

Registers (AT&T convention)

(0]

(0]

Function calling conventions
= RDI, RSI, RDX, RCX, R8, R9, XMMO0-7 (XMM: see below)y
convention (System V-AMD64 convention (Linux, Uniy),. these
registers are used to store the 6 first argumantesger and pointer only for
Rxx) of the called routine Sargument is stored in RDI;..."&rgument is
stored in R9
= Additional arguments are pushed onto the stacks Tiist be done in
reverse order (i.e., the last parameter first =fittst parameter is stored at
the lowest address)
= Parameters less than 64 bits long are not zerawgatk high bits are just
not considered
Caller-saved/callee-saved registers: some regigiRfsX, RCX, RDX, R8-11
(Microsoft x64 calling convention) - RAX, RCX, RDXRDI, RSI, RSP, R8-11
(AT&T convention) are said “caller-saved” (aka vdkaregisters). Before calling
a function, the caller should save the contenhe$¢ registers. Indeed as the called
function (callee) is allowed to modify these regist if the caller relies on their
values after the function returns, the caller npusth the values of these registers
onto the stack, so that they can be restored. @Gtlgesters (“callee-saved registers)
(RBX, RBP, RDI, RSI, RSP, R12-15 (Microsoft x64ltaj convention) - RBX,
RBP, R12-15 (AT&T x64 calling convention)) are cilegsed as non-volatile and
need not to be saved by the caller. It is the callesponsibility to clean the stack
after the call. That is why in the beginning of tuele, BufferOverflow saves RDI
and RSI (so as to be able to restore them afteiuttieer calls to printf and strcpy
(RDI and RSI are caller-saved registers)) and wisaves RBP (as a callee-saved
register, it is the duty of the function to savkeeatore executing further instructions)
By replacing R by E in the name of the register XRD EAX; RIP - EIP; etc.),
one can design the 32bit-lower part of RIP (usébulcompliance with 32 bit-
systems)

The stack is aligned on 16 bytes boundaries (133 bi

Operating systems do not use the theoretical 22646(hexabytes) set of addresses. For
instance, AMD64 processors support a physical agddspace of up to 248 bytes of RAM
(i.e., only the 6 first bytes (48 bits) of the aglsbes are used)

In x64, apart from general-purpose registers (sew), some registers are 128-bit long
(XMM registers) (not used in our use case)

General purpose 64 bit-registers — usage :

0 RSP : stack pointer

0 RIP :instruction pointer; contains the addresthefnext instruction

0 RBP : base pointer (aka frame pointer); pointshi® lhottom of the stack frame
allocated to the routine; the stack frame storesdbal variables and the parameters
passed to other function (call to an external fimmjt

0 RAX: : used to store the result of the functiorit(éxists and if it is less than 64 bit-
long)

0 RBX: optionally used as a base pointer

o EDI (32-bit lower part of RDI): used by gcc to s@rgc

0 RSI: used by gcc to store argv

Before starting the execution of a subroutine céiég instruction pushes the return address
onto the stack (i.e., the actual value of the Rifter) , then it jumps to the address of the
beginning of the subroutine

The leaveq instruction, before the end of a sulmeusets RSP to RBP, thus releasing the
space allocated to the subroutine and restoresB®BB#pping it from the stack where it
was saved at the beginning of the subroutine

The retq instruction, at the very end of a subrajtpops the return address from the stack
into RIP, thus resuming the execution at the sagkdn address

Structure of the stack when BufferOverflow is rummni

RSP

RBP

Stack Comments

saved RSI RSI points to argv

(address: RBP + 0x50)

saved RDI RDI contains argo

(address: RBP + 0x48),

name Local variable pushed onto the stack

(address: RBP+ 0x40)

saved RBP Cf. instruction <+0>

saved return address This is done by callq befaféeeBDverflow is started

(stack before the call)

Analysis of the assembly code of the BufferOverffomction

Prologue

<0> : push %rbp . save the base pointer (caliwedregister) onto the stack

<+1>:mov %rsp, %rbp : copy the value of the staaiter into the base pointer; RBP
points to the bottom of the frame stack

<+4>: sub 0x50, %rsp . reserve space (80 bytesSO(G 80 decimal)) to save argc

(stored in RDI) and argv (stored in RSI), and twethe local variable name. Name is 64-
byte long, i.e., in hexa 40; RDI is 8 byte-long §dxand RSI is 8-byte long (0x8) => total

size = 0x40+0x8+0x8 = 0x50 (or in decimal: 64+8+80== 0x50)

<+8> : mov %edi, -0x44(%rbp) . save EDI (the 32 lwer part of RDI) at
address -0x44(%rbp) (i.e., right on top of nambeddw RSI; see figure); as EDI contains
argc, now argc is saved at address -0x44(%rbp)

<+11>: mov %irsi, -Ox50(%rbp) : save RSI at addr@s50(%rbp), i.e., on top of the
frame stack (see figure); as RSI points to argwy tttee content of address -0x50(%rbp)
points to argv

Execution of printf(“Addr:%p\n:%s\n”, name)

<+15> : lea -0x40(%rbp), %rax : copy the addreghefvariable name (cf. figure) into
RAX

<+19> : mov %rax, %rsi : copy RAX into RSI; now R#ints to name (recall:
RSl is used to pass th& 2rgument to a subroutine, here to pass namentf)pri

<+22>: mov $0x400664, %edi : copy the addresshef memory where the string
“Addr;%p\n” is stored into EDI (recall: RDI is us¢al pass theslargument to a subroutine,
here to pass the string “Addr;%p\n” to printf)

<+27>: move $0x0, Y%eax : EAX stores the numbewegftor registers used to
store arguments of the called function, here O

<+32> : callg 0x400460 <printf@plt> . call printfifiction (jump to the address of
printf) (plt = procedure linkage table (= dynamdadling and linking) (0x400460 = address
of printf)

Execution of strcpy(name, argv[1])

<+37>: mov -0x50(%rbp), %rax : copy argv into RAXee figure and instruction
<+11>); now RAX points to argv[0]

<+41>: add $0x8, %rax : by adding 0x8 to RAX, ne#X points to argv[1]
<+45> : mov (%rax), %rdx : copy the value stomechix i.e., the address of argv[1],
into rdx

<+48> : lea -0x40(%rbp), Yorax : copy the addrekshe variable name (see

figure and instruction <+11>) into RAX

<+52>: mov %rdx, %rsi : copy RDX, which pointe targv[1] (cf.
instruction <+45>) into RSI (as before, RSI is usede to pass the"Rargument to a
subroutine; here to pass argv[1] to strcpy)

<+55> : mov %rax, %rdi : copy RAX (which point® tname; cf.
instruction <+48>) into RDI (as before, RDI is useere to pass the®largument to a
subroutine; here to pass name to strcpy)

<+58> : callg 0x400450 <strcpy@plt> . call strcpynétion ; strcpy copies its"®
argument (actually the string pointed by its secargiment) (argv[1] pointed by RSI) into
its I* argument (name, pointed by RDI)

Execution of printf(*Arg[1] is:%s\n”, name)

<+63> : lea -0x40(%rbp), %rax : copy the addresshe variable name (see
figure and instruction <+11>) into RAX

<+67>: mov %rax, %rsi : copy RAX, which pointewn to name (cf.
instruction <+63>) into RSI (as before, RSI is usede to pass the"Rargument to a
subroutine; here to pass name to printf)

<+70> : mov $0x40066f, %edi : copy the addresshef memory where the
string “Arg[1] is:%s\n” is stored into EDI (as be& RDI is used to pass th& d&rgument
to a subroutine, here to pass the string “Arg[ZoBn” to printf)

<+75>: mov $0x0, Y%eax : as in instruction <+2FBAX stores the
number of vector registers used to store argunadrite called function, here 0

<+80> : callg 0x400460 <printf@plt> . call printariction (0x400460 = address of
printf)

Output of BufferOverflow

Epilogue

<+85> : mov $0x0, Y%eax : store the value 0 in EAKAX stores the
output of the called function, here 0 as the fuorctivas correctly executed

<+90> : leaveq : release the space allocatddetsubroutine
and restore RBP by popping it from the stack (gdtruction <+0>)
<+91> :retq . pops the return address fromdtaek into

RIP, thus resuming the execution at the savedrretddress

Analysis of the attack

As one can see on the figure, below the variabheen@4 bytes), the stack stores RBP (8 bytes)wbelo
lies RIP i.e., the return address. If one pasgegameter of length larger than 64 bytes, theh REBP

is overwritten; if the length of the parameterasger than 72, then it is the return pointer RIRciviis
overwritten.

The goal of a buffer overflow attack is to ovenearihe return pointer by an address which points to
shell/malicious code. This is done by overflowingudfer, in our case, the name local variable.

To implement such an attack, one has to answee&tigns:

What is the “distance”, on the stack, between thleerable buffer and the return pointer
(note: the wvulnerable buffer can be separated ftben return pointer by other local
variables/buffers)?

What is the absolute address of the malicious code?

To answer the first question, two approaches assiple:

Disassembling the code and reverse engineeringahe, so as to determine the layout of
the local variables that compose the frame stack

Store into the vulnerable buffer a long patterclwdracters, so that when the return pointer
is overwritten and the function crashes, then aredetermine (using, for instance, gdb)

the characters that were written into the returimtee; then, as the pattern of characters
stored in the vulnerable buffer is known, it isvi@i to compute the distance (in number of
characters) between the vulnerable buffer andetwrr pointer

- If the attacker is not completely sure of its comagion of this distance, a trick is to store,
at the very end of the vulnerable buffer, a seviesopies of the address that points to its
malicious code (see figure below)

Answering the second question is not a trivial @askhe attacker does not know the execution contex
i.e., the actual state of the stack.

A basic technique is then to use a “nopsled” aeset of NOP (no operation) instructions:

Stack structure Malicious string
Garbage data

Vulnerable local (or nopsled)

variable nopsled

Other variables malicious code

RBP

RIP Pointer to the

malicious codse
(this pointer may
be repeated t
enhance the
chance to
overwrite RIP
with it)

L=

Note: if the address pointing to the malicious cderot correct but if it points to any addresshivit
the nopsled, the execution will "slide" down the R@structions until it reaches the malicious code
which will then be executed.

Notes:

- The site metasploit can be used to get (classeplpit codes

- Addresses should be written in little-endian (tasracters first)

- The command x /nb $rsp allows one to visualize tedpelow RSP; it is useful to display
the content of the stack

