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Games

No hidden information.

No randomness.

1 or 2 players.
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Graphs

Definition
Graph:

A set of vertices.

A set of edges: links
between the vertices.

Some games are played on a graph.

Games can be also be represented by a graph.
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General Organisation

Reconfiguration problems
(1-player games)

Reconfiguration of graph colourings

Reconfiguration of graph colourings

Reconfiguration of perfect matchings

Combinatorial Games
(2-player games)

Partizan Subtraction Games

Rules composition

Rules composition

Algorithmic Applications

Sampling Colourings

Online colouring
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Colouring reconfiguration
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Graph colouring

Definition
k-colouring: assignment of colours between 1 and k to the vertices of a
graph such that there is no monochromatic edge.

1
2

3

4

1

2
3

1

2

forbidden:

Applications:
Frequency assignment problem

Scheduling
Statistical Physics.
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Reconfiguration problems

Definition
Reconfiguration problem: Finding transformations between solutions of a
given problem.

Examples:
Rubik’s cube

, 15 puzzle, Rush-Hour (combinatorial puzzles)

?

Colouring reconfiguration.
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Reconfiguration
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Reconfiguration graph

Definition
Reconfiguration graph:

Vertices: all the possible colourings of a given graph.

Edges: Transformations between the colourings.
G(k ,G ) : reconfiguration graph of k-colourings of G .

Combinatorial puzzles (1-player games) can also be defined with this
formalism.
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Motivations

Adapt a solution already in place
→ Operational research

Understand the performance of local search algorithms.
→ Analysis of algorithms

Enumeration problems

Generating random colourings
→ Statistical physics
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Reconfiguration problems

Reachability: can we transform a colouring α into another β?

−→ Is there a path from α to β in G(k ,G )?

Connectivity: can we transform any α into any β?
−→ Is G(k ,G ) connected?

How many steps are required (in the worst case)?
−→ What is the diameter of G(k ,G )?
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Degeneracy

Definition
A graph is d-degenerate if there is an ordering such that each vertex has at
most d previous neighbours.

v

≤ d out-neighbours

Trees are 1-degenerate Planar graphs are 5-degenerate,
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Lemma
If G is d-degenerate and k ≥ d + 2, then G(k ,G ) is connected.

−→ Diameter at most 2n.

Cereceda’s Conjecture (2007)

The diameter of G(k ,G ) is O(n2) if k ≥ d + 2.

Even a polynomial upper bound is open.
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Known Results

Cereceda’s Conjecture
The diameter of G(k ,G ) is O(n2) if k ≥ d + 2.

number of colours Diameter Reference

k ≥ ∆ + 2 O(∆n) [Cer07]

k ≥ 2d + 1 O(n2) [Cer07]

k ≥ 2d + 2 O(dn) [BP16]
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Known Results

Cereceda’s Conjecture
The diameter of G(k ,G ) is O(n2) if k ≥ d + 2.

number of colours Diameter Reference

k ≥ ∆ + 2 O(∆n) [Cer07]

k ≥ 2d + 1 O(n2) [Cer07]

k ≥ 2d + 2 O(dn) [BP16]

Planar graphs:
diameter O(n2) if k ≥ 10 [Feg19],
diameter poly(n) if k ≥ 8 [BP15, Feg19],
diameter 2

√
n if k ≥ 7 [EF18].
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Results [BH19]

number of colours Diameter

k ≥ d + 2 O(nd+1)

k ≥ (1 + ε)(d + 1) O(n
1
ε )

k ≥ 3
2(d + 1) O(n2)

Planar graphs:
diameter O(n2) if k ≥ 9

⇒ improved by Feghali to O(n logc n) if k ≥ 8

diameter O(n6) if k ≥ 7

[Bousquet, Heinrich, 2019]
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Idea
Proceed recursively on d .

G a d-degenerate graph.
Two colourings α and β.

Allowed O(n) recursive calls to recolour a (d − 1)-degenerate graph.
F (n, d) ≈ n · F (n, d − 1)

Remove all the vertices coloured c .
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Full colours

Definition
A colour c is full if for all v , either:

v is coloured c .
v has an out-neighbour
coloured c .

1 1

Remark
Removing a full colour decreases d by 1:

Remove all vertices with this colour.
Forbid this colour for the other vertices.

Questions
What to do with a full colour?

Easy

How to create a full colour?
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How to create a full colour?

Idea
Proceed iteratively (using the degeneracy ordering).

Remove colour 2 from H.
Greedily recolour vertices with 2.
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Proceed iteratively (using the degeneracy ordering).

1

Full colour: 1.

Remove colour 2 from H.
Greedily recolour vertices with 2.
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How to create a full colour?

Idea
Proceed iteratively (using the degeneracy ordering).

2 1 1

Full colour: 1.

Remove colour 2 from H.
Greedily recolour vertices with 2.
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How to create a full colour?
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Proceed iteratively (using the degeneracy ordering).

2 1 1

fixed colours

Full colour: 1.

Remove colour 2 from H.
Greedily recolour vertices with 2.
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How to create a full colour?

Idea
Proceed iteratively (using the degeneracy ordering).

H2 1 1

fixed colours

Full colour: 1.

Remove colour 2 from H.

Greedily recolour vertices with 2.
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How to create a full colour?

Idea
Proceed iteratively (using the degeneracy ordering).

fixed colours

2 2 2 2

Full colour: 2.

Remove colour 2 from H.
Greedily recolour vertices with 2.
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Reconfiguration problems
(1-player games)

Reconfiguration of graph colourings

Reconfiguration of perfect matchings

Combinatorial Games
(2-player games)

Partizan Subtraction Games

Rules composition

Algorithmic Applications

Sampling Colourings

Online colouring
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Generating random colourings

Definition
Glauber Dynamics:

1. Select a random vertex.
2. Recolour it with a random colour if possible.
3. Repeat.

If the reconfiguration graph is connected, it produces an almost
uniform random colouring.

Mixing time: how long do we have to repeat this?
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Theorem (DHP18)
Glauber dynamics for edge colourings of a tree with ∆ + 1 colours mixes in
polynomial time.

Improves:
[Vig00], with 11

3 ∆ colours
[Po16] with 2∆ colours.

The number of colours is tight.

The exponent is independent from ∆.

[Delcourt, Heinrich, Perarnau, 2018], [Poon, 2016], [Vigoda, 2000]
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Further work

Cereceda’s conjecture:
Planar graphs with 7 colours.
Triangle-free planar graphs with 5 colours.

Improve the 3
2 (d + 1) bound for the quadratic diameter.

How many colours to get a linear diameter?

Lower bounds when k ≥ d + 3.

Glauber dynamics with ∆ + 2 colours.
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Combinatorial Games: Rules Composition
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Combinatorial Games

Combinatorial games:
2-player games,

no randomness,

no hidden information,

alternate play,

winner determined by the last move:
last player wins: normal convention,
last player loses: misère convention,

impartial: same moves for both players.
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Example

Definition
Subtraction games, Sub(S):

Parametrized by a set S : the subtraction set.

Played on heaps of tokens.

Each player can remove x ∈ S tokens from a single heap.
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Example

Definition
Subtraction games, Sub(S):

Parametrized by a set S : the subtraction set.

Played on heaps of tokens.

Each player can remove x ∈ S tokens from a single heap.

S = {1, 2}

(1,3,4)

(0,3,4) (1,2,4) (1,1,4) (1,3,3) (1,3,2)
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Example

Definition
Subtraction games, Sub(S):

Parametrized by a set S : the subtraction set.

Played on heaps of tokens.

Each player can remove x ∈ S tokens from a single heap.

Definition
NIM: Players can remove as many tokens as they want (S = N+).
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Two main types of results:

Study of particular instances of games:

explicit characterization of the outcomes,
algorithmic results,
hardness proofs.

Combinations of games:
combine existing games to create new ones,
decompose known games into simpler smaller games.

Examples: disjunctive sum, sequential compound [SU93],
ordinal sum [CNS18].
Misère play, pass moves [HN03].

[Stromquist, Ullman, 1993], [Carvalho, Nto, Santos, 2018], [Horrocks, Nowakowski,
2003]
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Game tree

S = {1, 2}

(1,2)

(0,2) (1,1) (1,0)

(0,1) (0,0) (1,0) (0,1) (0,0)

(0,0) (0,0) (0,0)

G : set of all possible games.
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Outcome

Goal: decide who wins under perfect play.

Definition
Outcome of a game:

first player wins

(in red)

,

second player wins

(in
blue)

.

o(G ) denotes the outcome of
a game.

(1,2)

(0,2) (1,1) (1,0)

(0,1) (0,0) (1,0) (0,1) (0,0)

(0,0) (0,0) (0,0)

(0,0) (0,0)

(0,0) (0,0) (0,0)

(0,2) (1,0)

(0,1) (1,0) (0,1)

(1,1)

(1,2)

Problem: Computing the whole game tree is usually too expensive
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Disjunctive sum

Idea: decompose a game into smaller components.

Definition
disjunctive sum:

G + H

G ′ + H G + H ′

Example: subtraction games on multiple heaps.

(2)
+

(3)
=

(3,2)
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Sprague-Grundy Theory

Goal: determine the outcome of a disjunctive sum by studying the
components individually.

However, o(G + H) cannot be determined by o(G ) and o(H).

Definition
Grundy value GV(G ): non-negative value attributed to a game.

Computed from the game tree.
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Sprague-Grundy Theory

Goal: determine the outcome of a disjunctive sum by studying the
components individually.

However, o(G + H) cannot be determined by o(G ) and o(H).

Definition
Grundy value GV(G ): non-negative value attributed to a game.

Computed from the game tree.

3

2 0 1

1 0 1 1 0

0 0 0
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Sprague-Grundy Theory

Goal: determine the outcome of a disjunctive sum by studying the
components individually.

However, o(G + H) cannot be determined by o(G ) and o(H).

Definition
Grundy value GV(G ): non-negative value attributed to a game.

Computed from the game tree.

GV(G ) = 0⇔ second player wins on G ,

GV(G + H) = GV(G )⊕ GV(H) where ⊕ is the bit-wise XOR.
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Grundy value

Definition
Game equivalence:

G ≡ H ⇔ ∀X ∈ G, o(G + X ) = o(H + X )

Theorem (Sprague, Grundy, 1936)
Every game G is equivalent to a single Nim heap of size GV(G ).

Not true for misère.
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Example

Subtraction games:

Theorem (Folklore)
The sequence of Grundy values for finite subtraction games on one heap is
ultimately periodic.

Examples
S = {1, 2}, GV-sequence: 0, 1, 2, 0, 1, 2, 0, 1, 2, . . .

S = {2, 4, 5, 8}, period: 17, preperiod: 12.

Corollary
The outcome of a position for a given subtraction game can be computed
in polynomial time.
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Rules compound

Combine rulesets instead of games.

Definition [DHLP18]
R1 and R2 two rulesets. Push-compound R1 }R2:

start by playing according to R1,

during the game, one of the player can change the rules to R2,

changing the rules counts as a move.

generalisation of pass moves,
variations of classical games.

[Duchêne, Heinrich, Larsson, Parreau, 2018]
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Example

Push-subtraction games:
Rulesets of the form Sub(S1) } Sub(S2)
S1 and S2 two subtraction sets.

Theorem (DHLP18)
Given S1 and S2 two finite sets, then Sub(S1) } Sub(S2) played on a
single heap has an ultimately periodic outcome sequence.

Question: What about multiple heaps?
This is not a disjunctive sum.
Pushing the button changes the rules in both components.

[Duchêne, Heinrich, Larsson, Parreau, 2018]
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Example

Example
Let R = Sub({1, 2}) } Sub({1}). The second player has a winning
strategy on (n1, . . . , nk) if and only if:

k⊕
i=1

(ni mod 4) = 1

Similar to the Grundy values.
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Almost disjunctive sum

Definition
push-sum :

G H

G ′ H G H ′ change the rules

Definition
push-equivalence:

G
}≡ H ⇔ ∀X ∈ G}, o(G X ) = o(H X )
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Push-button canonical forms

Theorem

For all push-game G , G G
}≡ 0 .

There are infinitely many equivalence classes which are winning for
2nd player.

Canonical representative can be computed.
By simplifying the game tree
Adaptation of the procedure for the normal disjunctive sum.

Easier than misère.
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Lemma
The sequence of canonical representatives for Sub({1, 2}) } Sub({1}) on
a single heap has infinitely many values.

Observation
For Sub({1, 2}) } Sub({1}), removing one token is never a good move.

The values for R} Sub({x}) can be further simplified.

Theorem
Let S be a finite set. The ‘simplified values’ of Sub(S) } Sub({x}) are
ultimately periodic.
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Perspectives

General solution for multi-heap push-subtraction games?

Find applications to other games.

Restrictions on the rulesets.
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Conclusion

Reconfiguration problems
(1-player games)

Reconfiguration of graph colourings

Reconfiguration of perfect matchings

Combinatorial Games
(2-player games)

Partizan Subtraction Games

Rules composition

Algorithmic Applications

Sampling Colourings

Online colouring

Accepted papers

Submitted papers

Writing in progress
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Collaborations

17 co-authors

Research stays:
Warsaw
Birmingham

Bordeaux
Tokyo
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Other works

Computing maximum cliques in B2-EPG graphs, Nicolas Bousquet,
Marc Heinrich, WG, 2017.

A generalization of Arc-Kayles, Antoine Dailly, Valentin Gledel, Marc
Heinrich, International Journal of Game Theory, 2018.

Enumerating minimal dominating sets in triangle-free graphs, Marthe
Bonamy, Oscar Defrain, Marc Heinrich, Jean-Florent Raymond,
STACS, 2019.
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Thank You!
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