Reconfiguration and Combinatorial Games

Marc Heinrich

under the supervision of:

Eric Duchêne Sylvain Gravier Nicolas Bousquet

Director Co-director Co-supervisor

July 9th, 2019

- No hidden information.
- No randomness.
- 1 or 2 players.

15	2	1	12
8	5	6	11
4	9	10	7
3	14	13	

Definition

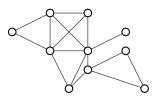
Graph:

• A set of vertices.

Definition

Graph:

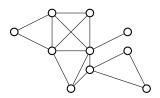
- A set of vertices.
- A set of edges: links between the vertices.



Definition

Graph:

- A set of vertices.
- A set of edges: links between the vertices.

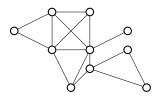


• Some games are played on a graph.

Definition

Graph:

- A set of vertices.
- A set of edges: links between the vertices.



• Some games are played on a graph.

• Games can be also be represented by a graph.

Reconfiguration problems

(1-player games)

Reconfiguration of graph colourings

Reconfiguration of perfect matchings

Reconfiguration problems

(1-player games)

Reconfiguration of graph colourings

Reconfiguration of perfect matchings

Reconfiguration problems

(1-player games)

Reconfiguration of graph colourings

Reconfiguration of perfect matchings

Algorithmic Applications Sampling Colourings

Online colouring

Combinatorial Games (2-player games) Partizan Subtraction Games

Rules composition

Reconfiguration problems

(1-player games)

Reconfiguration of graph colourings

Reconfiguration of perfect matchings

Reconfiguration problems

(1-player games)

Reconfiguration of graph colourings

Reconfiguration of perfect matchings

Colouring reconfiguration

Marc Heinrich

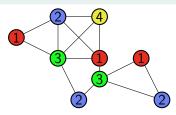
Reconfiguration and Combinatorial Games

July 9th, 2019 5/43

Graph colouring

Definition

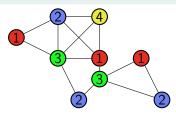
k-colouring: assignment of colours between 1 and k to the vertices of a graph such that there is no monochromatic edge.



Graph colouring

Definition

k-colouring: assignment of colours between 1 and k to the vertices of a graph such that there is no monochromatic edge.



Applications:

• Frequency assignment problem

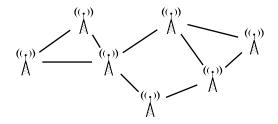
k-colouring: assignment of colours between 1 and k to the vertices of a graph such that there is no monochromatic edge.

Applications:

• Frequency assignment problem

(

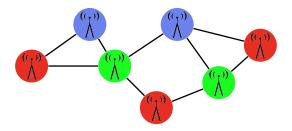
k-colouring: assignment of colours between 1 and k to the vertices of a graph such that there is no monochromatic edge.



Applications:

• Frequency assignment problem

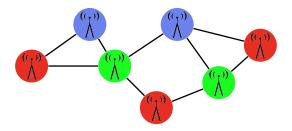
k-colouring: assignment of colours between 1 and k to the vertices of a graph such that there is no monochromatic edge.



Applications:

• Frequency assignment problem

k-colouring: assignment of colours between 1 and k to the vertices of a graph such that there is no monochromatic edge.



Applications:

- Frequency assignment problem
- Scheduling
- Statistical Physics.

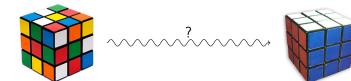
Definition

Reconfiguration problem: Finding transformations between solutions of a given problem.

Definition

Reconfiguration problem: Finding transformations between solutions of a given problem.

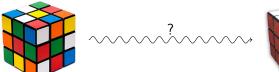
- Examples:
 - Rubik's cube



Definition

Reconfiguration problem: Finding transformations between solutions of a given problem.

- Examples:
 - Rubik's cube, 15 puzzle, Rush-Hour (combinatorial puzzles)



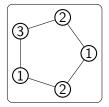
Definition

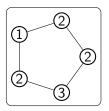
Reconfiguration problem: Finding transformations between solutions of a given problem.

- Examples:
 - Rubik's cube, 15 puzzle, Rush-Hour (combinatorial puzzles)

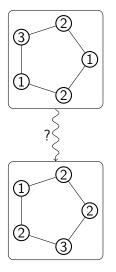
• Colouring reconfiguration.

Reconfiguration



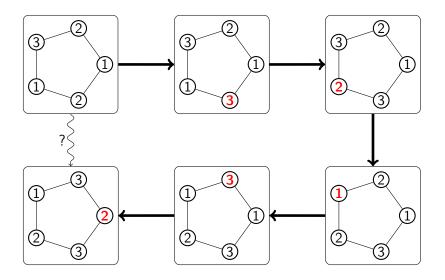


Reconfiguration



Marc Heinrich

Reconfiguration



Definition

Reconfiguration graph:

• Vertices: all the possible colourings of a given graph.

Definition

Reconfiguration graph:

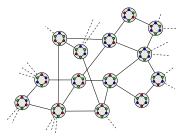
- Vertices: all the possible colourings of a given graph.
- Edges: Transformations between the colourings.

Definition

Reconfiguration graph:

- Vertices: all the possible colourings of a given graph.
- Edges: Transformations between the colourings.

 $\mathcal{G}(k, G)$: reconfiguration graph of k-colourings of G.

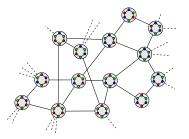


Definition

Reconfiguration graph:

- Vertices: all the possible colourings of a given graph.
- Edges: Transformations between the colourings.

 $\mathcal{G}(k, G)$: reconfiguration graph of k-colourings of G.



Combinatorial puzzles (1-player games) can also be defined with this formalism.

Marc Heinrich

Adapt a solution already in place
 → Operational research

- Adapt a solution already in place
 → Operational research
- \bullet Understand the performance of local search algorithms. \rightarrow Analysis of algorithms

- Adapt a solution already in place
 → Operational research
- $\bullet\,$ Understand the performance of local search algorithms. $\rightarrow\,$ Analysis of algorithms
- Enumeration problems

- Adapt a solution already in place
 → Operational research
- Understand the performance of local search algorithms. \rightarrow Analysis of algorithms
- Enumeration problems
- Generating random colourings
 → Statistical physics

• REACHABILITY: can we transform a colouring α into another β ?

REACHABILITY: can we transform a colouring α into another β?
 → Is there a path from α to β in G(k, G)?

- REACHABILITY: can we transform a colouring α into another β?
 → Is there a path from α to β in G(k, G)?
- CONNECTIVITY: can we transform any α into any β ?

- REACHABILITY: can we transform a colouring α into another β?
 → Is there a path from α to β in G(k, G)?
- CONNECTIVITY: can we transform any α into any β?
 → Is G(k, G) connected?

- REACHABILITY: can we transform a colouring α into another β?
 → Is there a path from α to β in G(k, G)?
- CONNECTIVITY: can we transform any α into any β?
 → Is G(k, G) connected?
- How many steps are required (in the worst case)?

- REACHABILITY: can we transform a colouring α into another β?
 → Is there a path from α to β in G(k, G)?
- CONNECTIVITY: can we transform any α into any β?
 → Is G(k, G) connected?
- How many steps are required (in the worst case)?
 → What is the diameter of G(k, G)?

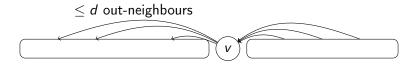
- REACHABILITY: can we transform a colouring α into another β?
 → Is there a path from α to β in G(k, G)?
- CONNECTIVITY: can we transform any α into any β?
 → Is G(k, G) connected?
- How many steps are required (in the worst case)?
 → What is the diameter of G(k, G)?

Definition

A graph is d-degenerate if there is an ordering such that each vertex has at most d previous neighbours.

Definition

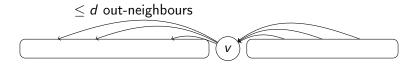
A graph is d-degenerate if there is an ordering such that each vertex has at most d previous neighbours.



Degeneracy

Definition

A graph is d-degenerate if there is an ordering such that each vertex has at most d previous neighbours.



• Trees are 1-degenerate

• Planar graphs are 5-degenerate,

If G is d-degenerate and $k \ge d + 2$, then $\mathcal{G}(k, G)$ is connected.

If G is d-degenerate and $k \ge d + 2$, then $\mathcal{G}(k, G)$ is connected.

 \longrightarrow Diameter at most 2^n .

If G is d-degenerate and $k \ge d + 2$, then $\mathcal{G}(k, G)$ is connected.

 \rightarrow Diameter at most 2^n .

Cereceda's Conjecture (2007)

The diameter of $\mathcal{G}(k, G)$ is $O(n^2)$ if $k \ge d+2$.

If G is d-degenerate and $k \ge d + 2$, then $\mathcal{G}(k, G)$ is connected.

 \rightarrow Diameter at most 2^n .

Cereceda's Conjecture (2007)

The diameter of $\mathcal{G}(k, G)$ is $O(n^2)$ if $k \ge d + 2$.

Even a polynomial upper bound is open.

The diameter of $\mathcal{G}(k, G)$ is $O(n^2)$ if $k \ge d+2$.

The diameter of $\mathcal{G}(k, G)$ is $O(n^2)$ if $k \ge d+2$.

number of colours	Diameter	Reference
$k \ge \Delta + 2$	$O(\Delta n)$	[Cer07]
$k \ge 2d + 1$	$O(n^2)$	[Cer07]
$k \ge 2d + 2$	O(dn)	[BP16]

The diameter of $\mathcal{G}(k, G)$ is $O(n^2)$ if $k \ge d + 2$.

number of colours	Diameter	Reference
$k \ge \Delta + 2$	$O(\Delta n)$	[Cer07]
$k \ge 2d + 1$	$O(n^2)$	[Cer07]
$k \ge 2d + 2$	O(dn)	[BP16]

The conjecture holds if we replace the degeneracy by:

- mad(G) the maximum average degree [BP16, Feg19],
- tw(G) the treewidth [BB14, Feg19],
- $\chi_g(G)$ the Grundy chromatic number [BB14].

The diameter of $\mathcal{G}(k, G)$ is $O(n^2)$ if $k \ge d + 2$.

number of colours	Diameter	Reference
$k \geq \Delta + 2$	$O(\Delta n)$	[Cer07]
$k \ge 2d + 1$	$O(n^2)$	[Cer07]
$k \ge 2d + 2$	O(dn)	[BP16]

The conjecture holds if we replace the degeneracy by:

- mad(G) the maximum average degree [BP16, Feg19],
- tw(G) the treewidth [BB14, Feg19], \Rightarrow conjecture true for d = 1
- $\chi_g(G)$ the Grundy chromatic number [BB14].

The diameter of $\mathcal{G}(k, G)$ is $O(n^2)$ if $k \ge d+2$.

number of colours	Diameter	Reference
$k \geq \Delta + 2$	$O(\Delta n)$	[Cer07]
$k \ge 2d + 1$	$O(n^2)$	[Cer07]
$k \ge 2d + 2$	O(dn)	[BP16]

Planar graphs:

- diameter $O(n^2)$ if $k \ge 10$ [Feg19],
- diameter poly(n) if $k \ge 8$ [BP15, Feg19],
- diameter $2^{\sqrt{n}}$ if $k \ge 7$ [EF18].

number of colours	Diameter
$k \ge d+2$	$O(n^{d+1})$
$k \geq (1+\varepsilon)(d+1)$	$O(n^{\frac{1}{\varepsilon}})$
$k \geq rac{3}{2}(d+1)$	<i>O</i> (<i>n</i> ²)

[Bousquet, Heinrich, 2019]

Marc Heinrich

Reconfiguration and Combinatorial Games

July 9th, 2019 15/43

number of colours	Diameter
$k \ge d+2$	$O(n^{d+1})$
$k \geq (1+\varepsilon)(d+1)$	$O(n^{\frac{1}{\varepsilon}})$
$k \geq rac{3}{2}(d+1)$	$O(n^{2})$

Planar graphs:

- diameter $O(n^2)$ if $k \ge 9$
- diameter $O(n^6)$ if $k \ge 7$

[Bousquet, Heinrich, 2019]

Marc Heinrich

number of colours	Diameter
$k \ge d+2$	$O(n^{d+1})$
$k \geq (1+\varepsilon)(d+1)$	$O(n^{\frac{1}{\varepsilon}})$
$k \geq rac{3}{2}(d+1)$	$O(n^{2})$

Planar graphs:

- diameter O(n²) if k ≥ 9
 ⇒ improved by Feghali to O(n log^c n) if k ≥ 8
- diameter $O(n^6)$ if $k \ge 7$

[Bousquet, Heinrich, 2019]

Marc Heinrich

number of colours	Diameter
$k \ge d + 2$	$O(n^{d+1})$
$k \geq (1+\varepsilon)(d+1)$	$O(n^{\frac{1}{\varepsilon}})$
$k \geq rac{3}{2}(d+1)$	$O(n^{2})$

Planar graphs:

- diameter O(n²) if k ≥ 9
 ⇒ improved by Feghali to O(n log^c n) if k ≥ 8
- diameter $O(n^6)$ if $k \ge 7$

[Bousquet, Heinrich, 2019]

Marc Heinrich

- G a d-degenerate graph.
- Two colourings α and β .

- G a d-degenerate graph.
- Two colourings α and β .
- Allowed O(n) recursive calls to recolour a (d-1)-degenerate graph.
- $F(n,d) \approx n \cdot F(n,d-1)$

- G a d-degenerate graph.
- Two colourings α and β .
- Allowed O(n) recursive calls to recolour a (d-1)-degenerate graph.
- $F(n,d) \approx n \cdot F(n,d-1)$
- Remove all the vertices coloured c.

Definition

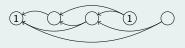
A colour c is **full** if for all v, either:

- v is coloured c.
- *v* has an out-neighbour coloured *c*.

Definition

A colour c is **full** if for all v, either:

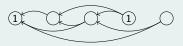
- v is coloured c.
- *v* has an out-neighbour coloured *c*.



Definition

A colour c is **full** if for all v, either:

- v is coloured c.
- v has an out-neighbour coloured c.



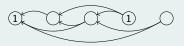
Remark

- Removing a full colour decreases d by 1:
 - Remove all vertices with this colour.
 - Forbid this colour for the other vertices.

Definition

A colour c is **full** if for all v, either:

- v is coloured c.
- *v* has an out-neighbour coloured *c*.



Remark

- Removing a full colour decreases d by 1:
 - Remove all vertices with this colour.
 - Forbid this colour for the other vertices.

Questions

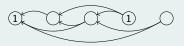
- What to do with a full colour?
- How to create a full colour?

July 9th, 2019 17/43

Definition

A colour c is **full** if for all v, either:

- v is coloured c.
- *v* has an out-neighbour coloured *c*.



Remark

- Removing a full colour decreases d by 1:
 - Remove all vertices with this colour.
 - Forbid this colour for the other vertices.

Questions

- What to do with a full colour? Easy
- How to create a full colour?

July 9th, 2019 17/43

Idea

Proceed iteratively (using the degeneracy ordering).

Idea

Proceed iteratively (using the degeneracy ordering).

Idea

Proceed iteratively (using the degeneracy ordering).

Full colour: 1.

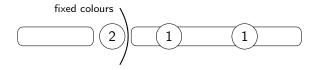
Idea

Proceed iteratively (using the degeneracy ordering).

Full colour: 1.

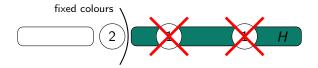
Idea

Proceed iteratively (using the degeneracy ordering).



Full colour: 1.

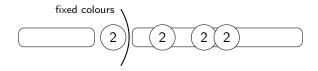
Proceed iteratively (using the degeneracy ordering).



Full colour: 1.

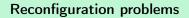
• Remove colour 2 from H.

Proceed iteratively (using the degeneracy ordering).



Full colour: 2.

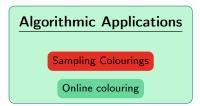
- Remove colour 2 from H.
- Greedily recolour vertices with 2.



(1-player games)

Reconfiguration of graph colourings

Reconfiguration of perfect matchings



Definition

Definition

Glauber Dynamics:

1. Select a random vertex.

Definition

- 1. Select a random vertex.
- 2. Recolour it with a random colour if possible.

Definition

- 1. Select a random vertex.
- 2. Recolour it with a random colour if possible.
- 3. Repeat.

Definition

- 1. Select a random vertex.
- 2. Recolour it with a random colour if possible.
- 3. Repeat.
- If the reconfiguration graph is connected, it produces an almost uniform random colouring.

Definition

- 1. Select a random vertex.
- 2. Recolour it with a random colour if possible.
- 3. Repeat.
- If the reconfiguration graph is connected, it produces an almost uniform random colouring.
- Mixing time: how long do we have to repeat this?

Glauber dynamics for edge colourings of a tree with $\Delta+1$ colours mixes in polynomial time.

[Delcourt, Heinrich, Perarnau, 2018], [Poon, 2016], [Vigoda, 2000]

Marc Heinrich

Glauber dynamics for edge colourings of a tree with $\Delta+1$ colours mixes in polynomial time.

- Improves:
 - [Vig00], with $\frac{11}{3}\Delta$ colours
 - [Po16] with 2Δ colours.

[Delcourt, Heinrich, Perarnau, 2018], [Poon, 2016], [Vigoda, 2000]

Marc Heinrich

Glauber dynamics for edge colourings of a tree with $\Delta+1$ colours mixes in polynomial time.

- Improves:
 - [Vig00], with $\frac{11}{3}\Delta$ colours
 - [Po16] with 2Δ colours.
- The number of colours is tight.

[Delcourt, Heinrich, Perarnau, 2018], [Poon, 2016], [Vigoda, 2000]

Marc Heinrich

Glauber dynamics for edge colourings of a tree with $\Delta+1$ colours mixes in polynomial time.

- Improves:
 - [Vig00], with $\frac{11}{3}\Delta$ colours
 - [Po16] with 2Δ colours.
- The number of colours is tight.
- The exponent is independent from Δ .

[Delcourt, Heinrich, Perarnau, 2018], [Poon, 2016], [Vigoda, 2000]

Marc Heinrich

- Planar graphs with 7 colours.
- Triangle-free planar graphs with 5 colours.

- Planar graphs with 7 colours.
- Triangle-free planar graphs with 5 colours.
- Improve the $\frac{3}{2}(d+1)$ bound for the quadratic diameter.

- Planar graphs with 7 colours.
- Triangle-free planar graphs with 5 colours.
- Improve the $\frac{3}{2}(d+1)$ bound for the quadratic diameter.
- How many colours to get a linear diameter?

- Planar graphs with 7 colours.
- Triangle-free planar graphs with 5 colours.
- Improve the $\frac{3}{2}(d+1)$ bound for the quadratic diameter.
- How many colours to get a linear diameter?
- Lower bounds when $k \ge d + 3$.

- Planar graphs with 7 colours.
- Triangle-free planar graphs with 5 colours.
- Improve the $\frac{3}{2}(d+1)$ bound for the quadratic diameter.
- How many colours to get a linear diameter?
- Lower bounds when $k \ge d + 3$.
- Glauber dynamics with $\Delta + 2$ colours.

Combinatorial Games: Rules Composition

Marc Heinrich

Reconfiguration and Combinatorial Games

July 9th, 2019 23/43

Combinatorial games:

• 2-player games,

- 2-player games,
- no randomness,
- no hidden information,

- 2-player games,
- no randomness,
- no hidden information,
- alternate play,

- 2-player games,
- no randomness,
- no hidden information,
- alternate play,
- winner determined by the last move:
 - last player wins: normal convention,
 - last player loses: misère convention,

- 2-player games,
- no randomness,
- no hidden information,
- alternate play,
- winner determined by the last move:
 - last player wins: normal convention,
 - last player loses: misère convention,
- impartial: same moves for both players.

- 2-player games,
- no randomness,
- no hidden information,
- alternate play,
- winner determined by the last move:
 - last player wins: normal convention,
 - last player loses: misère convention,
- impartial: same moves for both players.

- 2-player games,
- no randomness,
- no hidden information,
- alternate play,
- winner determined by the last move:
 - last player wins: normal convention,
 - last player loses: misère convention,
- impartial: same moves for both players.

- 2-player games,
- no randomness,
- no hidden information,
- alternate play,
- winner determined by the last move:
 - last player wins: normal convention,
 - last player loses: misère convention,
- impartial: same moves for both players.

Example

Definition

Subtraction games, SUB(S):

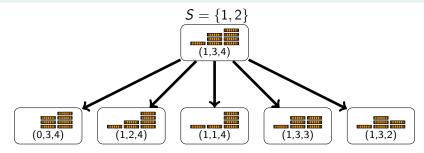
- Parametrized by a set S: the subtraction set.
- Played on heaps of tokens.
- Each player can remove $x \in S$ tokens from a single heap.

Example

Definition

Subtraction games, SUB(S):

- Parametrized by a set S: the subtraction set.
- Played on heaps of tokens.
- Each player can remove $x \in S$ tokens from a single heap.



Example

Definition

Subtraction games, SUB(S):

- Parametrized by a set S: the subtraction set.
- Played on heaps of tokens.
- Each player can remove $x \in S$ tokens from a single heap.

Definition

NIM: Players can remove as many tokens as they want $(S = \mathbb{N}^+)$.

• Study of particular instances of games:

[Stromquist, Ullman, 1993], [Carvalho, Nto, Santos, 2018], [Horrocks, Nowakowski, 2003]

- Study of particular instances of games:
 - explicit characterization of the outcomes,
 - algorithmic results,
 - hardness proofs.

[Stromquist, Ullman, 1993], [Carvalho, Nto, Santos, 2018], [Horrocks, Nowakowski, 2003]

- Study of particular instances of games:
 - explicit characterization of the outcomes,
 - algorithmic results,
 - hardness proofs.
- Combinations of games:

[Stromquist, Ullman, 1993], [Carvalho, Nto, Santos, 2018], [Horrocks, Nowakowski, 2003]

- Study of particular instances of games:
 - explicit characterization of the outcomes,
 - algorithmic results,
 - hardness proofs.
- Combinations of games:
 - combine existing games to create new ones,
 - decompose known games into simpler smaller games.

[Stromquist, Ullman, 1993], [Carvalho, Nto, Santos, 2018], [Horrocks, Nowakowski, 2003]

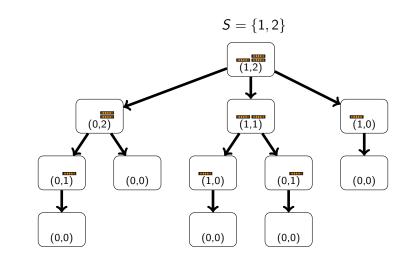
- Study of particular instances of games:
 - explicit characterization of the outcomes,
 - algorithmic results,
 - hardness proofs.
- Combinations of games:
 - combine existing games to create new ones,
 - decompose known games into simpler smaller games.
 - Examples: disjunctive sum, sequential compound [SU93], ordinal sum [CNS18].

[Stromquist, Ullman, 1993], [Carvalho, Nto, Santos, 2018], [Horrocks, Nowakowski, 2003]

- Study of particular instances of games:
 - explicit characterization of the outcomes,
 - algorithmic results,
 - hardness proofs.
- Combinations of games:
 - combine existing games to create new ones,
 - decompose known games into simpler smaller games.
 - Examples: disjunctive sum, sequential compound [SU93], ordinal sum [CNS18].
 - Misère play, pass moves [HN03].

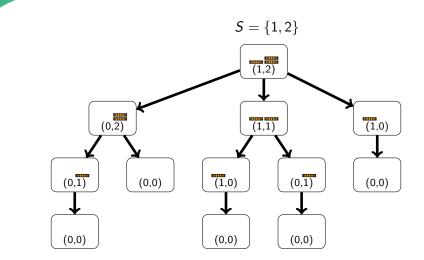
[Stromquist, Ullman, 1993], [Carvalho, Nto, Santos, 2018], [Horrocks, Nowakowski, 2003]

Game tree



July 9th, 2019 27/43

Game tree



• \mathfrak{G} : set of all possible games.

July 9th, 2019 27/43

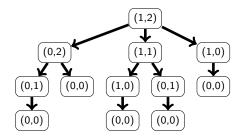
Goal: decide who wins under perfect play.

Goal: decide who wins under perfect play.

Definition

Outcome of a game:

- first player wins (in red),
- second player wins (in **blue**).

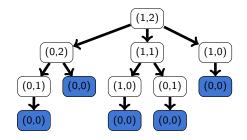


Goal: decide who wins under perfect play.

Definition

Outcome of a game:

- first player wins (in red),
- second player wins (in **blue**).

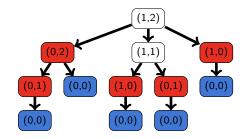


Goal: decide who wins under perfect play.

Definition

Outcome of a game:

- first player wins (in red),
- second player wins (in **blue**).

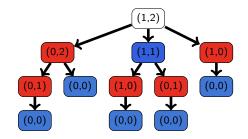


Goal: decide who wins under perfect play.

Definition

Outcome of a game:

- first player wins (in red),
- second player wins (in **blue**).

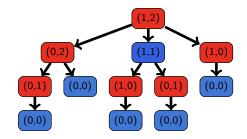


Goal: decide who wins under perfect play.

Definition

Outcome of a game:

- first player wins (in red),
- second player wins (in **blue**).



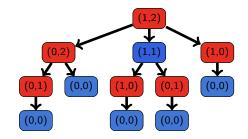
Goal: decide who wins under perfect play.

Definition

Outcome of a game:

- first player wins (in red),
- second player wins (in **blue**).

o(G) denotes the outcome of a game.



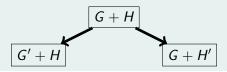
• Problem: Computing the whole game tree is usually too expensive

• Idea: decompose a game into smaller components.

• Idea: decompose a game into smaller components.

Definition

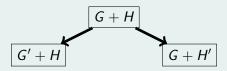
disjunctive sum:



• Idea: decompose a game into smaller components.

Definition

disjunctive sum:

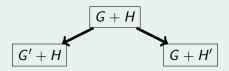


• Example: subtraction games on multiple heaps.

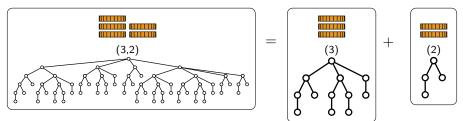
• Idea: decompose a game into smaller components.

Definition

disjunctive sum:



• Example: subtraction games on multiple heaps.



• Goal: determine the outcome of a disjunctive sum by studying the components individually.

- Goal: determine the outcome of a disjunctive sum by studying the components individually.
- However, o(G + H) cannot be determined by o(G) and o(H).

- Goal: determine the outcome of a disjunctive sum by studying the components individually.
- However, o(G + H) cannot be determined by o(G) and o(H).

Definition

Grundy value $\mathcal{GV}(G)$: non-negative value attributed to a game.

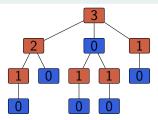
Computed from the game tree.

- Goal: determine the outcome of a disjunctive sum by studying the components individually.
- However, o(G + H) cannot be determined by o(G) and o(H).

Definition

Grundy value $\mathcal{GV}(G)$: non-negative value attributed to a game.

Computed from the game tree.



- Goal: determine the outcome of a disjunctive sum by studying the components individually.
- However, o(G + H) cannot be determined by o(G) and o(H).

Definition

Grundy value $\mathcal{GV}(G)$: non-negative value attributed to a game.

Computed from the game tree.

• $\mathcal{GV}(G) = 0 \Leftrightarrow$ second player wins on G,

- Goal: determine the outcome of a disjunctive sum by studying the components individually.
- However, o(G + H) cannot be determined by o(G) and o(H).

Definition

Grundy value $\mathcal{GV}(G)$: non-negative value attributed to a game.

Computed from the game tree.

- $\mathcal{GV}(G) = 0 \Leftrightarrow$ second player wins on G,
- $\mathcal{GV}(G + H) = \mathcal{GV}(G) \oplus \mathcal{GV}(H)$ where \oplus is the bit-wise XOR.

Definition

Game equivalence:

$$G \equiv H \Leftrightarrow orall X \in \mathfrak{G}, o(G + X) = o(H + X)$$

Definition

Game equivalence:

$${\mathcal G}\equiv {\mathcal H} \Leftrightarrow orall X\in {\mathfrak G}, o({\mathcal G}+X)=o({\mathcal H}+X)$$

Theorem (Sprague, Grundy, 1936)

Every game G is equivalent to a single NIM heap of size $\mathcal{GV}(G)$.

Marc Heinrich

Reconfiguration and Combinatorial Games

July 9th, 2019 31/43

Definition

Game equivalence:

$$G \equiv H \Leftrightarrow orall X \in \mathfrak{G}, o(G + X) = o(H + X)$$

Theorem (Sprague, Grundy, 1936)

Every game G is equivalent to a single NIM heap of size $\mathcal{GV}(G)$.

• Not true for misère.

Subtraction games:

Subtraction games:

Theorem (Folklore)

The sequence of Grundy values for finite subtraction games on one heap is ultimately periodic.

Subtraction games:

Theorem (Folklore)

The sequence of Grundy values for finite subtraction games on one heap is ultimately periodic.

Examples

•
$$S = \{1, 2\}, \ \mathcal{GV}$$
-sequence: $0, 1, 2, 0, 1, 2, 0, 1, 2, ...$

Subtraction games:

Theorem (Folklore)

The sequence of Grundy values for finite subtraction games on one heap is ultimately periodic.

Examples

- $S = \{1, 2\}, \ \mathcal{GV}$ -sequence: $0, 1, 2, 0, 1, 2, 0, 1, 2, \dots$
- $S = \{2, 4, 5, 8\}$, period: 17, preperiod: 12.

Subtraction games:

Theorem (Folklore)

The sequence of Grundy values for finite subtraction games on one heap is ultimately periodic.

Examples

•
$$S = \{1, 2\}, \ \mathcal{GV}$$
-sequence: $0, 1, 2, 0, 1, 2, 0, 1, 2, ...$

•
$$S = \{2, 4, 5, 8\}$$
, period: 17, preperiod: 12.

Corollary

The outcome of a position for a given subtraction game can be computed in polynomial time.

Marc Heinrich

Rules compound

• Combine rulesets instead of games.

[Duchêne, Heinrich, Larsson, Parreau, 2018]

Marc Heinrich

Rules compound

• Combine rulesets instead of games.

Definition [DHLP18]

 \mathcal{R}_1 and \mathcal{R}_2 two rulesets. Push-compound $\mathcal{R}_1 \odot \mathcal{R}_2$:

- start by playing according to \mathcal{R}_1 ,
- during the game, one of the player can change the rules to \mathcal{R}_2 ,
- changing the rules counts as a move.

[Duchêne, Heinrich, Larsson, Parreau, 2018]

Marc Heinrich

Rules compound

• Combine rulesets instead of games.

Definition [DHLP18]

 \mathcal{R}_1 and \mathcal{R}_2 two rulesets. Push-compound $\mathcal{R}_1 \odot \mathcal{R}_2$:

- start by playing according to \mathcal{R}_1 ,
- during the game, one of the player can change the rules to \mathcal{R}_2 ,
- changing the rules counts as a move.
- generalisation of pass moves,
- variations of classical games.

[Duchêne, Heinrich, Larsson, Parreau, 2018]

Marc Heinrich

Push-subtraction games:

- Rulesets of the form $SUB(S_1) \odot SUB(S_2)$
 - S_1 and S_2 two subtraction sets.

[Duchêne, Heinrich, Larsson, Parreau, 2018]

Marc Heinrich

Push-subtraction games:

• Rulesets of the form $SUB(S_1) \odot SUB(S_2)$ S_1 and S_2 two subtraction sets.

Theorem (DHLP18)

Given S_1 and S_2 two finite sets, then $SUB(S_1) \odot SUB(S_2)$ played on a single heap has an ultimately periodic outcome sequence.

[Duchêne, Heinrich, Larsson, Parreau, 2018]

Marc Heinrich

Push-subtraction games:

• Rulesets of the form $SUB(S_1) \odot SUB(S_2)$ S_1 and S_2 two subtraction sets.

Theorem (DHLP18)

Given S_1 and S_2 two finite sets, then $SUB(S_1) \odot SUB(S_2)$ played on a single heap has an ultimately periodic outcome sequence.

Question: What about multiple heaps?

[Duchêne, Heinrich, Larsson, Parreau, 2018]

Marc Heinrich

Push-subtraction games:

Rulesets of the form SUB(S₁) ⊙ SUB(S₂)
 S₁ and S₂ two subtraction sets.

Theorem (DHLP18)

Given S_1 and S_2 two finite sets, then $SUB(S_1) \odot SUB(S_2)$ played on a single heap has an ultimately periodic outcome sequence.

Question: What about multiple heaps?

- This is not a disjunctive sum.
- Pushing the button changes the rules in both components.

[Duchêne, Heinrich, Larsson, Parreau, 2018]

Marc Heinrich

Let $\mathcal{R} = \text{SuB}(\{1,2\}) \odot \text{SuB}(\{1\})$. The second player has a winning strategy on (n_1, \ldots, n_k) if and only if:

$$\bigoplus_{i=1}^k (n_i \bmod 4) = 1$$

Let $\mathcal{R} = \text{SuB}(\{1,2\}) \odot \text{SuB}(\{1\})$. The second player has a winning strategy on (n_1, \ldots, n_k) if and only if:

$$\bigoplus_{i=1}^k (n_i \bmod 4) = 1$$

• Similar to the Grundy values.

Almost disjunctive sum

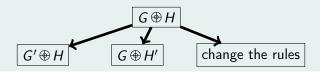
Marc Heinrich

July 9th, 2019 36/43

Almost disjunctive sum

Definition

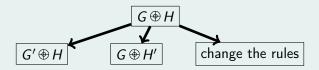
push-sum \oplus :



Almost disjunctive sum

Definition

push-sum \oplus :



Definition

push-equivalence:

$$G \stackrel{\scriptscriptstyle \otimes}{=} H \Leftrightarrow orall X \in \mathfrak{G}^{\scriptscriptstyle \odot}, o(G \oplus X) = o(H \oplus X)$$

Push-button canonical forms

Theorem

• For all push-game G, $G \oplus G \stackrel{\otimes}{\equiv} \bigcirc$.

Theorem

- For all push-game G, $G \oplus G \stackrel{\otimes}{\equiv} \bigcirc$.
- There are infinitely many equivalence classes which are winning for 2nd player.

Theorem

- For all push-game G, $G \oplus G \stackrel{\otimes}{\equiv} \bigcirc$.
- There are infinitely many equivalence classes which are winning for 2nd player.
- Canonical representative can be computed.
 - By simplifying the game tree
 - Adaptation of the procedure for the normal disjunctive sum.

Theorem

- For all push-game G, $G \oplus G \stackrel{\otimes}{=} 0$.
- There are infinitely many equivalence classes which are winning for 2nd player.
- Canonical representative can be computed.
 - By simplifying the game tree
 - Adaptation of the procedure for the normal disjunctive sum.
- Easier than misère.

The sequence of canonical representatives for $SUB(\{1,2\}) \odot SUB(\{1\})$ on a single heap has infinitely many values.

The sequence of canonical representatives for $SUB(\{1,2\}) \odot SUB(\{1\})$ on a single heap has infinitely many values.

Observation

For $SUB(\{1,2\}) \odot SUB(\{1\})$, removing one token is never a good move.

The sequence of canonical representatives for $SUB(\{1,2\}) \odot SUB(\{1\})$ on a single heap has infinitely many values.

Observation

For $SUB(\{1,2\}) \odot SUB(\{1\})$, removing one token is never a good move.

• The values for $\mathcal{R} \odot Sub(\{x\})$ can be further simplified.

The sequence of canonical representatives for $SUB(\{1,2\}) \odot SUB(\{1\})$ on a single heap has infinitely many values.

Observation

For $SUB(\{1,2\}) \odot SUB(\{1\})$, removing one token is never a good move.

• The values for $\mathcal{R} \odot Sub(\{x\})$ can be further simplified.

Theorem

Let S be a finite set. The 'simplified values' of $SUB(S) \odot SUB(\{x\})$ are ultimately periodic.

- General solution for multi-heap push-subtraction games?
- Find applications to other games.
- Restrictions on the rulesets.

Conclusion

Reconfiguration problems

(1-player games)

Reconfiguration of graph colourings

Reconfiguration of perfect matchings

Combinatorial Games

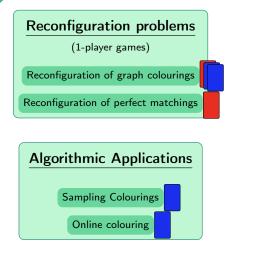
(2-player games)

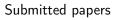
Partizan Subtraction Games

Rules composition

Marc Heinrich

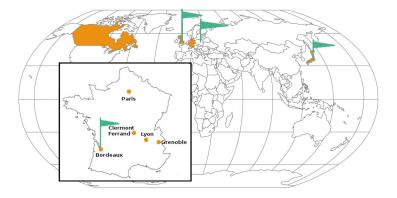
Conclusion

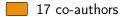




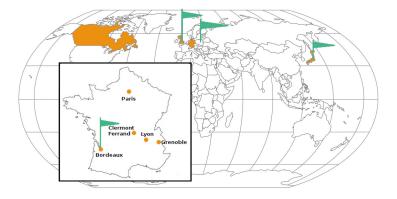
Writing in progress

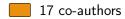
Collaborations





Collaborations





Research stays:

- Warsaw
- Birmingham

- Bordeaux
- Tokyo

Marc Heinrich

Reconfiguration and Combinatorial Games

July 9th, 2019 41/43

Computing maximum cliques in B_2 -EPG graphs, Nicolas Bousquet, Marc Heinrich, WG, 2017.

A generalization of Arc-Kayles, Antoine Dailly, Valentin Gledel, Marc Heinrich, International Journal of Game Theory, 2018.

Enumerating minimal dominating sets in triangle-free graphs, Marthe Bonamy, Oscar Defrain, Marc Heinrich, Jean-Florent Raymond, STACS, 2019.

Marc Heinrich

Reconfiguration and Combinatorial Games

July 9th, 2019 43/43