Computing maximum cliques in B_2 -EPG graphs

Nicolas Bousquet² Marc Heinrich¹

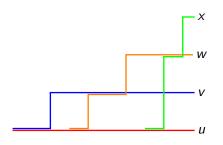
¹Université Lyon 1, LIRIS, France

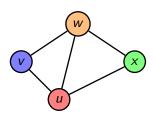
²Univ. Grenoble-Alpes, G-SCOP, France.

International Workshop on Graph-Theoretic Concepts in Computer Science

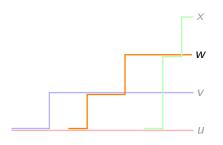
June 23, 2017

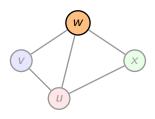
Definition



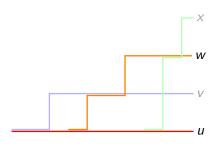


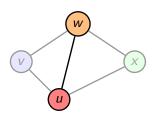
Definition



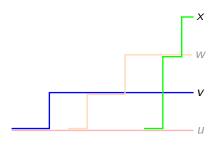


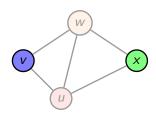
Definition





Definition





B_k -EPG graphs

Remark

Any graph has an EPG-representation.

B_k -EPG graphs

Remark

Any graph has an EPG-representation.

Definition

 B_k -EPG graphs: Graphs with an EPG representation using paths with at most k bends.

B_k -EPG graphs

Remark

Any graph has an EPG-representation.

Definition

 B_k -EPG graphs: Graphs with an EPG representation using paths with at most k bends.

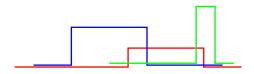
- B₀-EPG are interval graphs.
- B_1 -EPG: edge intersection of \bot , \lnot , \lnot .

Definition

- k-interval graphs: intersection graphs of k-intervals
- **k-track** graphs: there are *k*-tracks, and each vertex is composed of several intervals, at most one per track.

- k-interval $\subseteq B_{4k-4}$ -EPG $\subseteq (4k-3)$ -interval.
- k-track $\subseteq B_{3k-3}$ -EPG.

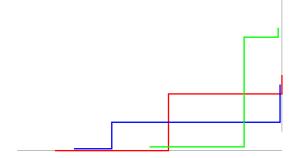
- k-interval $\subseteq B_{4k-4}$ -EPG $\subseteq (4k-3)$ -interval.
- k-track $\subseteq B_{3k-3}$ -EPG.



- k-interval $\subseteq B_{4k-4}$ -EPG $\subseteq (4k-3)$ -interval.
- k-track $\subseteq B_{3k-3}$ -EPG.

- k-interval $\subseteq B_{4k-4}$ -EPG $\subseteq (4k-3)$ -interval.
- k-track $\subseteq B_{3k-3}$ -EPG.

- k-interval $\subseteq B_{4k-4}$ -EPG $\subseteq (4k-3)$ -interval.
- k-track $\subseteq B_{3k-3}$ -EPG.



Deciding $G \in B_k$ -EPG

- Polynomial for k = 0.
- NP-Hard for k = 1, even restricted to \bot shapes [HKU14, CCH14].
- NP-Hard for k=2.

Deciding $G \in B_k$ -EPG

- Polynomial for k = 0.
- NP-Hard for k = 1, even restricted to \bot shapes [HKU14, CCH14].
- NP-Hard for k = 2.

Graph class	Number of bends	Reference
Trees	1	[GLS09]
Outer-planar	2	[HKU12]
Planar	$3 \leq \ldots \leq 4$	[HKU12]
Linegraphs	2	[BS10]

[[]Cameron, Chaplick, Hoàng, 2014], [Heldt, Knauer, Ueckerdt, 2014], [Golumbic, Lipshteyn, Stern, 2009], [Heldt, Knauer, Ueckerdt, 2012], [Biedl, Stern, 2010]

Maximum clique problem

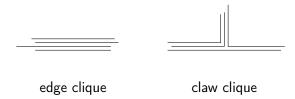
- Polynomial on interval graphs and 2-track graphs [K09].
- NP-complete (APX-hard) on 2-interval and 3-track graphs [FGO12].

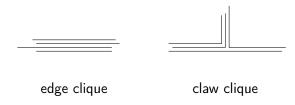
Maximum clique problem

- Polynomial on interval graphs and 2-track graphs [K09].
- NP-complete (APX-hard) on 2-interval and 3-track graphs [FGO12].
- Polynomial on B_0 , B_1 -EPG (without the representation) [EGM13].
- NP-Hard for $k \ge 4$, even APX-hard: contains 2-interval graphs.

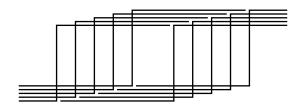
Maximum clique problem

- Polynomial on interval graphs and 2-track graphs [K09].
- NP-complete (APX-hard) on 2-interval and 3-track graphs [FGO12].
- Polynomial on B_0, B_1 -EPG (without the representation) [EGM13].
- NP-Hard for $k \ge 4$, even APX-hard: contains 2-interval graphs.
- Polynomial for B₂-EPG (given the representation).

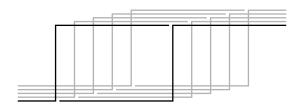




ullet There is a polynomial number of maximal clique in a ${\it B}_1 ext{-EPG}$ graph.



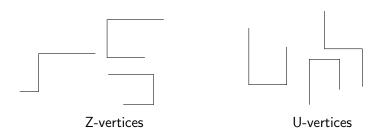
- There is a polynomial number of maximal clique in a B_1 -EPG graph.
- There are B_2 -EPG graphs with an exponential number of maximum cliques.



- There is a polynomial number of maximal clique in a B_1 -EPG graph.
- There are B_2 -EPG graphs with an exponential number of maximum cliques.

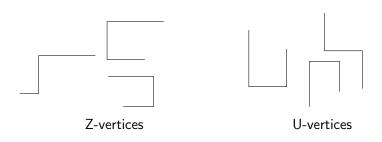
Idea of proof

Distinguish two types of vertices:



Idea of proof

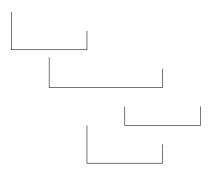
Distinguish two types of vertices:



- Look at how the two types of vertices can interact.
- Find a maximum clique when there is only one type of vertices.

Lemma

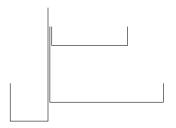
Lemma



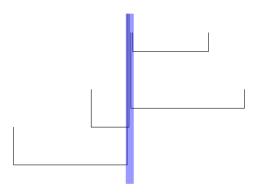
Lemma

Lemma

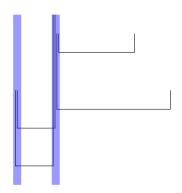
Lemma



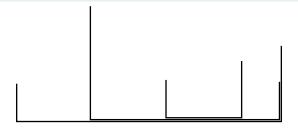
Lemma



Lemma

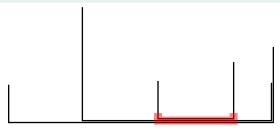


Let X be a clique composed of U-vertices, all using the same row.



Let X be a clique composed of U-vertices, all using the same row. There is a shape \square such that:

- Every vertex of X contains **d**.
- Every vertex u universal to X intersect 🔟.

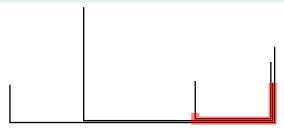


Let X be a clique composed of U-vertices, all using the same row. There is a shape \square such that:

- Every vertex of X contains **d**.
- Every vertex u universal to X intersect 🔟.

Let X be a clique composed of U-vertices, all using the same row. There is a shape \square such that:

- Every vertex of X contains **d**.
- Every vertex u universal to X intersect 🔟.



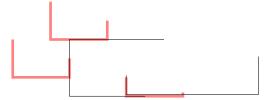
Algorithm:

lacktriangle Enumerate all possible triples of lacktriangle, one for each row.

- Enumerate all possible triples of , one for each row.
- 2 Consider the subgraph G made of:

 - The U-vertices containing one of the \Box .

- Enumerate all possible triples of , one for each row.
- 2 Consider the subgraph G made of:
 - The Z-vertices intersecting all the 🔟
 - The U-vertices containing one of the 🔟.
- **3** This subgraph is the join of G_Z and G_U .



- Enumerate all possible triples of , one for each row.
- 2 Consider the subgraph G made of:
 - The Z-vertices intersecting all the 🔟.
 - The U-vertices containing one of the 🔟
- **3** This subgraph is the join of G_Z and G_U .
- **1** Compute a maximum clique of G_Z and G_U .

Graphs with only Z-vertices

Goal

Given a graph G with only Z-vertices, find a maximum clique of G.

Graphs with only Z-vertices

Goal

Given a graph G with only Z-vertices, find a maximum clique of G.

Find 'good' subgraphs, satisfying:

- For every clique X there is a good subgraph containing X.
- Computing a maximum clique in a good subgraph is polynomial.
- There is a polynomial number of good subgraphs.

Graphs with only Z-vertices

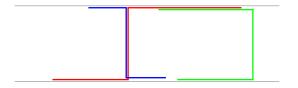
Goal

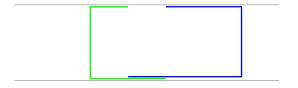
Given a graph G with only Z-vertices, find a maximum clique of G.

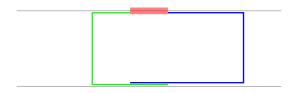
Find 'good' subgraphs, satisfying:

- For every clique X there is a good subgraph containing X.
- Computing a maximum clique in a good subgraph is polynomial.
- There is a polynomial number of good subgraphs.

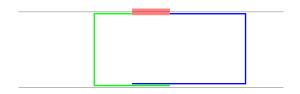
- Generate all 'good' subgraphs.
- For each subgraph, compute a maximum clique.







 Good subgraphs defined in terms of vertices containing/intersecting certain grid edges.



- Good subgraphs defined in terms of vertices containing/intersecting certain grid edges.
- Join of clique, 2-track and complement of bipartite.

Conclusion

- What about B₃-EPG graphs?
- What can you do without the representation?
- Improve existing bounds on the chromatic number of B_k -EPG graphs?

Conclusion

- What about B₃-EPG graphs?
- What can you do without the representation?
- Improve existing bounds on the chromatic number of B_k -EPG graphs?

