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Introduction

The Classification Problem

 Let O be a set of objects of the form (o4, . . ., 0))

with attributes A;, 1 < i < d, and class membership ¢;,¢;€E C={c,, .. ., ¢;}

* Wanted:
class membership for objects from D\ O

a classifier K : D — C

* Difference to clustering

classification: set of classes C known apriori
clustering: classes are output

 Related problem: prediction
E redict the value of a numerical attribute



Introduction

NAME |RANK YEARS | TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 4 yes
Bill Professor 2 yes
Jim Associate Prof 4 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Training
Data

\ 4

Algorithm

Classification

Classifier
(Model)
-~

yes

Tenured?

(Jett, Professor, 4)

\ /

if rank = ‘professor’
or years > 6

then tenured = ‘yes’




Evaluation of Classifiers

Introduction
* Given a sample of labeled data (O)

« Want to build a classifier that labels the entire population

in particular, D \ O
 Can only estimate the performance of the classifier on unseen data
* Need separate, disjoint training and test data (all labeled)

— Training data

for training the classifier (model construction)
— Test data
to evaluate the trained classifier



Evaluation of Classifiers

Approaches

» Train-and-Test
— partition set O into two (disjoint) subsets: Training data and Test data

—not recommended for small O

» m-fold cross validation
- partition set O 1nto m same size subsets

- train m different classifiers using a different one of these m subsets

as test data and the other subsets for training
- average the evaluation results of the m classifiers

- appropriate also for small O



Evaluation of Classifiers

Evaluation Criteria

* Classification accuracy
* Interpretability
¢.g. size of a decision tree
insight gained by the user
 Efficiency
of model construction
of model application

* Scalability for large datasets
for secondary storage data

 Robustness
w.rI.t. noise and unknown attribute values

Classification as optimization problem: score of a classifier

<



Evaluation of Classifiers

Classification Accuracy

* Let K be a classifier, TR C O the training data, 7E C O the test data.
C(0): actual class of object o.

e classification accuracy of K on TE:

[0 ETEIK(0) = C(0)} |

A K)=
« classification error ceuracy (K) | TE |
cTEK
ErrorTE(K)=|{0 K(0) = C(0)}]
| TE |

aggregates over all classes ¢, € C

not appropriate if minority class 1s most important

<



Evaluation of Classifiers

Confusion Matrix

o Let c; € C be the target (positive) class, the union of all other classes the
contrasting (negative) class.

* Comparing the predicted and the actual class labels, we can distinguish four
different cases:

Predicted as positive  |Predicted as negative

Actually positive | True Positive (TP) False Negative (FN)

Actually negative |False Positive (FP) True Negative (TN)

Confusion matrix



Evaluation of Classifiers

Precision and Recall

* We define the following two measures of K w.r.t. the given target class:

Precision(K) = Eld
| TP |+ | FP |
1P
Recall(K) = 7P|

 There 1s a trade-off between prlsgléjlg)t_ll- Ar{élv%l:aH.
 Therefore, we also define a measure combining precision and recall:

2 - Precision(K)-Recall(K)
Precision(K) + Recall(K)

F— Measure(K) =



Evaluation of Classifiers

ROC Curves

« F-Measure captures only one of the possible trade-offs between precision and recall
(or between TP and FP)

 True positive rate: percentage of positive data correctly predicted
 False positive rate: percentage of negative data falsely predicted as positive

A

* ROC (Recerver Operating Characteristic)
Curve: plots true positive rate
w.r.t. false positive rate

1.0

* area under ROC as quantitative measure
Classifier 1 ideally = 1

true positive rate
0.6 0.8

0.4

~false positive rate
00 @2 04 06 08 1.0
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Evaluation of Classifiers

Model Selection

* (Given two classifiers and their (estimated!) classification accuracies

e.g., obtained from m-fold cross-validation
* Which of the classifiers 1s really better?
* Naive approach: just take the one with higher mean classification accuracy
 But: classification accuracy may vary greatly among the m folds

* Differences 1n classification accuracies may be insignificant

due only to chance

11



Evaluation of Classifiers

Model Selection

* We measure the classification error on a (small) test dataset O C X .

* Questions:
How to estimate the true classification error on the whole instance space X?
How does the deviation from the observed classification error depend on the
size of the test set?

« Random experiment to determine the classification error on test set (of size n):
repeat n times

(1) draw random object from X
(2) compare predicted vs. actual class label for this object

» Classification error 1s percentage of misclassified objects

—> observed classification error follows a Binomial distribution
with mean = true classification error (unknown)

12



Evaluation of Classifiers

Binomial distribution

* n repeated tosses of a coin with unknown probability p of head
head = misclassified object

* Record the number 7 of heads (misclassifications)
* Binomial distribution defines probability for all possible values of 7:

P(ry=—"" (1= py

: V(1 —=7)! : :
* Random variable Y cou’ﬁtgr’ilg tl@ number of heads 1n # coin tosses:

ElY]|=n-p expected value

VarlY]=np(l1- p)

o, =+/np(1-p)

13



Evaluation of Classifiers

Estimating the True Classification Error

* We want to estimate the unknown true classification error (p).

. Bots : r
Estimator for p: E[Y]=n fp —r = _r

* We want also confidence intervals for our estimate. 7

» Standard deviation for the true classification error (Y/n):

L _0y _nmp(-p)

— n n

r r

La-5

n n r .

o z\ use — as estimator for p
n n
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Evaluation of Classifiers

Estimating the True Classification Error

* For sufficiently large values of n, the Binomial distribution can be approximated
by a Normal distribution with the same mean and standard deviation.

 Random variable Y Normal distributed with mean m and standard deviation s
and y be the observed value of Y-

the mean of Y falls into the following interval with a probability of N %

y+2z,0
* In our context, N % confidence interval for the true classification error:

interval size decreases with increasing »

r (1 _ f) inte ize increases with increasing N and zy

Vv
—iZN\
n n

15



Decision Trees

Introduction

ID Age Autotype Risk
1 23 Family
2 17 Sports
3 43 Sports
4 63 Family low
3 32 Truck low

Qand hierarchical structure

Risk = low
disjunction of conjunction of attribute constraints

Risk = high



Decision Trees

Introduction

* A decision tree 1s a tree with the following properties:
— An 1nner node represents an attribute.

— An edge represents a test on the attribute of the father node.
— A leaf represents one of the classes of C.
 Construction of a decision tree

Based on the training data
Top-Down strategy
» Application of a decision tree

Traversal of the decision tree from the root to one of the leaves
Unique path
Assignment of the object to class of the resulting leaf

—
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Decision Trees

Construction of Decision Trees

Base algorithm
e Initially, all training data records belong to the root.

» Next attribute 1s selected and split (split strategy).
» Training data records are partitioned according to the chosen split.
* Method 1s applied recursively to each partition.

local optimization method (greedy)

—

Termination conditions
« No more split attributes.
« All (most) training data records of the node belong to the same class.

18



Decision Trees

Example

Day (Outlook Temperature Humidity Wind PlayTennis?
1|sunny hot high weak no
2|sunny hot high strong no
3|overcast hot high weak yes
4\rainy mild high weak yes
S|rainy cool normal weak yes
6|rainy cool normal strong no
7].

Is .t'aday a day- o play tennis?




Decision Trees

Example

@utlooD

Humidity
high normal

,,NO ,,yes™ ,,NO ,,yes

20



Decision Trees

Types of Splits
Categorical attributes

e Conditions of the form ,,attribute = a* or ,,attribute € set
* Many possible subsets

ttrlbute ttribute

b & e

Numerical attributes
* Conditions of the form ,.attribute < a*“

* Many possible split points ttrlbute

(\

21



Decision Trees

Quality Measures for Splits

Given
e a set 7 of training data
« a disjoint, exhaustive partitioning 7, 7>, . . ., T,,of T

« p; the relative frequency of class c;in T

Wanted

* A measure of the impurity of set S (of training data) w.r.t. class labels

eAsplitof Tmn T, 15, . .., T, minimizing this impurity measure

information gain, gini-index

—
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Decision Trees

Information Gain

» Entropy: minimal number of bits to encode a message
to transmit the class of a random training data record
» Entropy for a set T of training data:

t (T) = 1o
entropy(T) =0, if p,= 1 fgll? SIZ)OI{%/Z ) E Pi-2082 Py

entropy(T) = 1 for k= 2 classes with p; = 1/2
o Let attribute 4 produce the partitioning 7, 75, . . ., T, of T.

» The information gain of attribute 4 w.r.t T'is defined as

N

InformationGain(T', A) =

23



Decision Trees

Gini-Index

* Gini index for a set T of training data records

k

gini(T) =1- p/
low gini index < low impurity, =
high gini index < high impurity

e Let attribute 4 produce the partitioning 7, 7>, . . . , T,,0f T.
* Gini index of attribute 4 w.r.t. 7'1s defined as

gini (T) = 3, gini(T)
i=1

24



Decision Trees

Example
9.,yes“ 5, no* entropy =0.940 9.,yes“ 5, no* entropy =0.940
high normal weak stark
3 ., yescc 4 ”nO“ 6 ., yesac 1 ”nO“ 6 ., yescc 2 ”nocc 3 ”yescc 3 ”nocc
Entropy = 0.985 Entropy = 0.592 Entropy = 0.811 Entropy = 1.0
. . - 7 7
InformationGain(T', Humidity) = 0.94 - 2 +0.985 - 2 +0.592 =0.151
: : : 8 6
Information@righ{difraérl e hiphd iformatidm S4H

—
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Decision Trees

Overfitting

Overfitting: there are two decision trees T and 7~ with

* T'has a lower error rate than 7’ on the training data, but
e 7” has a lower test error rate than 7.

0.9 I I I I I | I | I
0.85 .

o 0.8 |
S
—
3 0.75 -
Q
S
— 0.7 7
o
=
S 0.65 _
O
= .
g7 06 on training data -
N
< oss L on test data
U i B .

0‘5 | | | | | | | | | Tree Size

0 10 20 30 40 50 60 70 80 90 100



Decision Trees

Approaches for Avoiding Overfitting

* Removal of erroneous training data

in particular, inconsistent training data

* Choice of appopriate size of training data set
not too small, not too large

* Choice of appropriate minimum support

minimum support:

minimum number of training data records belonging to a leaf node

minimum support >> 1

<
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Decision Trees

Approaches for Avoiding Overfitting

 Choice of appropriate minimum confidence

minimum confidence: mmimum percentage of the majority class of a leaf
node
minimum confidence << 100%
@, | .
caves can also absorb noisy / erroneous training data records

* Subsequent pruning of the decision tree

remove overfitting branches

see next section

—
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Decision Trees

Error Reduction-Pruning [Mitchell 1997]

* Train-and-Test paradigm
 Construction of decision tree 7 for training data set 7R.
* Pruning of 7 using test data set TE
— Determine subtree of 7T such that its removal leads to the maximum
reduction of the classification error on 7E.
— Remove this subtree.

— Stop, 1f no more such subtree.

only applicable 1f enough labled data available

=<
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Decision Trees

Minimal Cost Complexity Pruning
[Breiman, Friedman, Olshen & Stone 1984]

* Cross-Validation paradigm

Applicable even if only small number of labled data available
 Pruning of decision tree using training data set

Cannot use classification error as quality measure
* Novel quality measure for decision trees

Trade-off between (observed) classification error and tree size

Weighted sum of classification error and tree size

Small decision trees tend to generalize better to unseen data

<
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Decision Trees

Notions

e Size |T] of decision tree 7: number of leaves
« Cost complexity of T'w.r.t. training data set TR and complexity parameter a = O:

CC,,(T,o) =error,(T)+o T |
e The smallest minimizing subtree T(a) of T w.r.t. o has the following properties :

(1) There is no subtree of T with smaller cost complexity.
(2) If 7(o) and T satisty condition (1), then 7(a) 1s a subtree of 7.

ca=0:T(o)=T
*a=o00; J(a)=rootof T

e ) <a <oo: T(a) = true subtree of 7 (more than the root)

31



Decision Trees

Notions

o T.: subtree of T with root e, {e}: tree consisting only of node e
T'> T*: subtree relationship

« For small values of a: CC(T,, o) < CCrr({e}, o),
for large values of a: CCr(T,, o) > CCrr({e}, o).

e critical value of o w.r.t. e
ey CCTR(T e’ OLcrit) — CCTR({e}a OLcrit)
for a = a.,;, the subtree of node e should be pruned

* weakes't link: node with minimal o, _,;, value

32



Decision Trees

Method

« Start with complete decision tree T.

e [teratively, each time remove the weakest link from the current tree.

e I[f several weakest links: remove all of them 1n the same step.

sequence of pruned trees 7(o) > T(o,) > ... > 1(a,)

:Withoc1<oc2<...<ocm

« Selection of the best 7T(a.)
estimate the true classification error of all 7(a,), 7(o,), . . ., T(a.,)

performing /-fold cross-validation on the training data set

33



Decision Trees

Example

i | Ti| training error estimated error true error

1 71 0,0 0,46 0,42

2 63 0,0 0,45 0,40

3 98 0,04 0,43 0,39

4 40 0,10 0,38 0,32

3 34 0,12 0,38 0,32

6 19 0,2 0,32 0,31
7] 0] o020 [ o3 | = o030 |

8 9 0,32 0,39 0,34

9 I 0,41 0,47 0,47

10]. .

75 has the lowest estimated error

and the lowest true error

<
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Bayesian Classification

Introduction

 When building a probabilistic classifier, we would like to find the classifier
(hypothesis) 4 that has the maximum conditional probability given the

max P(h| D)

observed data, 1.e.

* But how to compute these conditional probabilities for all possible classifiers 47

* Bayes theorem

* Applying Bayes thg)%hu%oé gﬂt@ﬁf P(B|A) P(A4)

P(D|W)-P(H)
P(D)
max P(h| D) = max P(D|h):-P(h)

d

P(h|D) =

35



Bayesian Classification

Introduction
max P(h|D)=max P(D|h)-P(h)
heH heH

P(h| D) : posterior probability of /4 given the data D
P(D | h): likelihood of the data D given hypothesis /
P(h): prior probability of 4

* The more training data D we have, the higher becomes the influence of
P(D\h).

* P(h) 1s subjective.

* P(h) can, e.g., favor simpler over more complex hypotheses.

e If there 1s no prior knowledge, 1.e. P(/) uniformly distributed, then we
obtain the Maximum Likelihood Classifier as a special case.

36



Bayesian Classification

Introduction

* When applying a learned hypothesis % to classify an object o,
we could use the following decision rule: argmax P(c . | h)
J

1 depends on the attribute values of o, i.e. 04, . . %,

* Therefore we determine

argmax P(c; | o,
* Applying Bayes theorem, we obtain

P(o,,

argmax P(c;|o,,(¥},0,) = argmax
c,€C c,;€C

= argmax P(o,,{¥},0, |Cj)'P(CJ')

o e Bayesian Classifier



Bayesian Classification

Naive Bayes Classifier

- Estimate the P(c;) using the observed frequencies of the individual classes.
« How to estimate the P(o,, . . ., 0,4] ¢;)?

* Assumption:

— Attribute values o; are conditionally independent, given class ¢;

— p are easler to estimate from the training data than
(0;]¢;)

P(oy, ..., 04| ¢)

d d
E| A | instead of n| A; | parameters to estimate

.. =1 . i= ,
 Decision rule of the Naive Bayes-d'lasszﬁer

d
argmax P(cj)-l_[ P(o,|c;)
i=1

chC
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Bayesian Classification

Bayesian Networks

» Naive Bayes-Classifier 1s very efficient, but assumptions may be unrealistic
m==) suboptimal classification accuracy

 Often, only some attributes are dependent, most are independent

(given some class)

» Bayesian networks (Bayesian belief networks / Bayes nets)

allow you to specify all variable dependencies,

all other variables are assumed to be conditionally independent

* Network respresents subjective, a-priori beliefs

39



Bayesian Classification

Bayesian Networks

» Graph with nodes = random variable (attribute) and

edge = conditional dependency

« Each random variable 1s (for given values of the predecessor variables)

conditionally independent from all variables that are no successors.

 For each node (random variable): Table of conditional probabilities

given values of the predecessor variables

Bayesian network can represent causal knowledge

=<
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Bayesian Classification

Example

% (FH,~S) (~FH,~S)
Smoker
(FH,S) (~FH.S)

| LC | 0.8 05| 0.7] 0.1

@@ 1cl 02l 05 03l 09

Conditional probabilities

. for LungCancer
PositiveXRay Dyspne

For given values of FamilyHistory and Smoker, the value of Emhysema does
not provide any additional information about LungCancer

41



Bayesian Classification

Iraining Bayesian Networks

* With given network structure and fully observable random variables
all attribute values of the training examples known

estimate conditional probability tables by calculating the relative frequencies

* With given network structure and partially known random variables
some attribute values of the training examples unknown
expectation maximization (EM) algorithm

random 1nitialization of the unknown attribute values

» With aprior1 unknown network structure (very difficult!)
assume fully observable random variables

heuristic scoring functions for alternative network structures

42



Bayesian Classification

Interpretation of Raster Images

* Automatical interpretation of d raster images of a given region
for each pixel: a d-dimensional vector of grey values (o, . . ., 0,)

» Assumption: different kinds of landuse exhibit characteristic behaviors of
reflection / emission

(12),(17.5)

Wgricultural ;
12 / : . . Water

(8.5),(18.7)

= e Urban
1122 bt R
3232 = -
343 3 16.5 18.0 20.0 22.0
Band 2
Earth Surface Feature-Space
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Bayesian Classification

Interpretation of Raster Images

» Application of the (optimal) Bayes classifier
* Estimate the P(o, . . ., 0, ¢;) without assuming conditional indepency

e Assume a d-dimensional Normal distribution of the grey value vectors
of a given class

Probability of Water

Class Membership
\@%
- \

Dec151611 Surfaces
Urb\q\ @
% @ A\ggcultural




Bayesian Classification

Method

e Estimate from the training data

u: d-dimensional mean vector of all feature vektors of class c;

2. d-d covariance matrix of class c;

* Problems of the decision rule
- Likelihood for the chosen cla
very small

- Likelihood for several
Threshold

4

classes similar

unclassified regions

45



Bayesian Classification

Discussion

+ Optimality property
Standard for comparison with other classifiers
+ High classification accuracy in many applications

+ Incrementality
classifier can easily be adapted to new training objects

+ Integration of domain knowledge

- Applicability
the conditional probabilities may not be available

- Maybe 1nefficient
For high numbers of features
in particular, Bayesian networks

46



Nearest-Neighbor Classification

Motivation

* Optimal Bayes classifier assuming a d-dimensional Normal distribution

Requires estimates for u;and X,

Estimate for u, needs much less training data

e Goal

classifier using only the mean vectors per class

=) Nearest-neighbor classifier

47



Nearest-Neighbor Classification

Example
Wolf
Wolf MWolf

™ D%g Classifier:

og .
— Cat is a dog!
Dog Dog \ Cat 1 s

Cat Ca![’LCat

Instance-Based Learning
Related to Case-Based Reasoning



Nearest-Neighbor Classification

Overview

Base method

 Training objects o as feature (attribute) vectors o = (o, . . ., 0,)
« Calculate the mean vector w; for each class c;
 Assign unseen object to class ¢; with nearest mean vector u,;

Generalisations

» Use more than one representative per class
 Consider £ > 1 neighbors

* Weight the classes of the A~—nearest neighbors

49



Nearest-Neighbor Classification

Notions

* Distance function
defines similarity (dissimilarity) for pairs of objects

* k: number of neighbors considered

e Decision Set
set of k-nearest neighbors considered for classification

e Decision rule

how to determine the class of the unseen object
from the classes of the decision set?

50



Nearest-Neighbor Classification

Example

+

+

TN
+ [_ _\
\\@J/ o

+

Uniform weight for the decision set

classes ,,+*“ and ,,-*

\

O Decision set fork =1

’

N\

-~

\

/

1 Decision set fork=5

k = 1: classification as ..+, kK = 5 classification as ,,—*

Inverse squared distance as weight for the decision set

k=1 and k= 5: classification as ,,+*

SFU, CMPT 741, Fall 2009, Martin Ester
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Nearest-Neighbor Classification

Choice of Parameter k

* ..too small* k: very sensitive to outliers
*,too large* k: many objects from other clusters (classes) in the decision set
* medium £: highest classification accuracy, often 1 << £ <10

T - Q Decision set for k=1
-
/ ® }\ “..‘.
I/ \ O "““‘ / — ~ \
| o @ o ) o ¢ i ( | Decision set for k=7
o Q@
\ / o) ) :-' \ //
\ ® / —
e ~N — -~ o O‘
o) o

.............. iDecision set for k=17

*
. o
......
----------
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Nearest-Neighbor Classification

Decision Rule

Standard rule
Choose the majority class within the decision set

Weighted decision rule
Weight the classes of the decision set

* By distance

* By class distribution (often skewed!)
class A: 95 %, class B 5 %
Decision set = {A, A, A, A, B, B, B}
Standard rule = A, Weighted rule = B
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Nearest-Neighbor Classification

Index Support for k-Nearest-Neighbor Queries

« Balanced 1ndex tree (such as X-tree or M-tree)

* Query point p

* PartitionList
BBs of subtrees that need to be processed, sorted 1n ascending order
w.r.t. MinDist to p

* NN
Nearest neighbor of p in the data pages read so far

p

A i o . .
MinDisAp) —~ — MinDist(B,p)

—

—
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Nearest-Neighbor Classification

Index Support for k-Nearest-Neighbor Queries

* Remove all BBs from PartitionList that have a larger distance to p
than the currently best NN of p

* PartitionList 1s sorted in ascending order w.r.t. MinDist to p

* Always pick the first element of PartitionList
as the next subtree to be explored
Does not read any unnecessary disk pages!

* Query processing limited to a few paths of the index structure

Average runtime O(log »n) for ,,not too many* attributes

QFor very large numbers of attributes: O(n)
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Nearest-Neighbor Classification

Discussion

+ Local method
Does not have to find a global decision function (decision surface)
High classification accuracy
In many applications
+ Incremental

_I_

Classifier can easily be adapted to new training objects
+ Can be used also for prediction

- Application of classifier expensive
Requires k-nearest neighbor query

- Does not generate explicit knowledge about the classes
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Support Vector Machines

Introduction [Burges 1998]

InPU’t S={(x1,y1),...,(xn,yn)} xl.EX

a training set
of objects  and their known classes

Vi & {_ 19 + 1}
Output

a classifier

f:X—={-1L+1}
Goal

Find the best separating hyperplane (e.g., lowest classification error)

Two-class problem

<
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Support Vector Machines

Intmductzpn

Halt-space:
wx ®b>0

< (Class +1) ® * Classification based on the sign

of the decision function

Half-space: ®
x4 b <0 Jor(X)=wx+b
(Class —1) * ©“.” denotes the mner product
of two vectors
®
W
®

Hyperplane: wx +b =0

>
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Support Vector Machines

Introduction

Choose hyperplane

® with largest margin

_ , (maximum distance
~___ toclosest training
~__ object)

59



Support Vector Machines

A]ntroduction

W.X1+b:O
wW.X, tb=1
é_W.(Xz'Xl):l

wx +b=+I . _
- a [[wl[ || x;-%;[[cos 0=1

w.x+b=0

1

Y =[x, —x ||=
| w]

Y: margin
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Support Vector Machines

Method

Problem

« Minimize ||w||?

» Under the constraints f; _ l,...n: y,(wx, +b)-120
Dual problem

e Introduce dual variables o, for each training object i

 Find o, maximizing .

L(a) =i210‘i ‘%i“i Oyt

i,7=1

n
under the constraints o, = 0 and Eocl. 'y, = 0
=1

Quadratic programming problem
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Support Vector Machines

 Only training objects with o, > 0
contribute to w

 These training objects are the
support vectors

Typically, number of
Q support vectors <<n
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Support Vector Machines

Non-Linear Classifiers




Support Vector Machines

Non-Linear Classifiers

« Decision function  Jws (¥) = W (x) +b
» Kernel of two objects Vi, x€X: K(x,x')=W(x)¥(x')
» Explicit computation of W(x) 1S not necessary

« Example: qj(x) — (X12 : )C22 : \/Exl X5, «/Exl ] \/Exz ,1)

K(x,x')=W(x).¥x)=(xx+1)
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Support Vector Machines

Kernels

» Kernel 1s a similarity measure

* K(x,X’) 1s a kernel 1ft /K(xlaxl) K(xpxz)
Vx.eX: |K(x,,x) K(x,,x,)

1s a symmetric and positive definite matrix
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Support Vector Machines

SVM for Protein Classification [Leslie et al 2002]

* Two sequences are similar when they share many common substrings
(subsequences)

 K(x,x'") = ENS' where A 1s a parameter

s common substring

and |s| denotes the length of string s

 Very high classification accuracy for protein sequences
* Variation of the kernel (when allowing gaps 1n the matching subsequences)

K(X, _X') - E }\‘length(sﬂx)+lengl‘h(S,x')

s common substring

length(s,x): length of the subsequence of x matching s
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Support Vector Machines

SVM for Prediction of Translation Initiation Sites [Zien et al 2000]

* Translation initiation site (TIS): starting position of a protein coding region in DNA
All TIS start with the triplet “ATG”
* Problem: given an “ATG” triplet, does 1t belong to a TIS?

» Representation of DNA
Window of 200 nucleotides around candidate “ATG”

Encode each nucleotide with a 5 bit word (00001, 00010, . . ., 10000) for
A, C, G, T and unknown

- Vectors of 1000 bits
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Support Vector Machines

SVM for Prediction of Translation Initiation Sites

» Kernels

K(x,x'") = (X.X')d d = 1: number of common bits

d = 2: number of common pairs of bits

Locally improved kernel: compare only small window around “ATG”

* Experimental results
Long range correlations do not improve performance
Locally improved kernel performs best
Q Outperforms state-of-the-art methods
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Support Vector Machines

Discussion

+ Strong mathematical foundation
+ Find global optimum
+ Scale well to very high-dimensional datasets
+ Very high classification accuracy
In many challenging applications

- Inefficient model construction
Long training times (~ O (n?))
- Model is hard to interpret

Learn only weights of features
Weights tend to be almost uniformly distributed
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Multi-relational Classification

The Single Table Assumption

» Existing data mining algorithms expect data in a single table

* But in reality, DBs consist of multiple tables

* Naive solution: join all tables 1nto a single one (universal
relation) and apply (single-relational) data mining algorithm

Purchases Clients
Client# (Date Item |Quantity Client# Name Age
2765 02/25/2005 |A 5 1005 Jones 35
3417 02/26/2005 |B 1 1010 Smith 52
1005 02/26/2005 |C 12 1054 King 27




Multi-relational Classification

The Single Table Assumption

e Universal relation

<

What if rule depends on how many different items
were purchased by a client?

Client# Date Item Quantity |Name Age

1005 02/26/2005 C 12 Jones 35

1005 02/28/2005 B 2 Jones 35

2765 02/25/2005 A 5 Bornman 23
There are no more client entities!
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Multi-relational Classification

Aggregating Related Tables

* Enhancing ,,target table® by aggregates of the related tuples
in other tables

» Aggregation operators: COUNT, SUM, MIN, AVG, . ..

Client# Name Age Overall Overall
Quantity of Quantity of
Item A Item B

1005 Jones 35 0 10

1010 Smith 52 35 0

@ More meaningful! But what aggregates to consider?
= And what 1f attributes of the other clients that have purchased
the same 1tem are relevant?
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Multi-relational Classification

Multi-Relational Data Mining

» Data mining methods for multi-table databases

 Pattern search space much larger than for single tables

 Testing t

e validity of a pattern more expensive

e Similar C
classi

ata mining tasks
fication, clustering, association rules, . . .

... plus some tasks specific to the multi-relational case

* Single table (propositional) algorithms can be upgraded

to multiple tables (first order predicate logic)
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Multi-relational Classification

Inductive Logic Programming (ILP)

* Goal: learn logic programs from example data

* Knowledge representation 1s expressive and understandable
» Examples: tuples from multiple tables

* Hypotheses: sets of rules

* Use of background knowledge
also set of rules
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Multi-relational Classification

Logic Programs and Databases

» Logic program: set of clauses

* Clause: rule of the form ,,Head < Body “
where Head / Body consist of atoms connected using the logical

operators
A, v and -
» Atom: predicate applied to some terms

» Predicate: boolean function with arguments (terms)

» Term: constant (e.g., mary), variable (e.g., X),
function symbol applied to some term
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Multi-relational Classification

Logic Programs and Databases
« Example rule
father(X,Y) v mother(X,Y)< parent(X,Y)
 Definite clauses: exactly one atom in the head

parent(X,Y )< father(X,Y) v mother(X,Y)
* Horn clauses

One (positive) atom 1n the head, conjunction of body atoms

mother(X,Y)< parent(X,Y) A female(Y)
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Multi-relational Classification

Classical Rule Induction Task

* G1ven:
set P of examples from target relation (positive examples)
set N of examples not from target relation (negative examples)

background predicates B

hypothesis (rule) language

* Find a set of rules that explains all positive and none of the
negative examples

consistent and complete set of rules

<
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Multi-relational Classification

Example
Training examples Background knowledge
daughter(mary,ann) + parent(ann,mary) female(ann) daughter(eve,tom)
+ parent(ann,tom) female(mary)
daughter(tom,ann) - parent(tom,eve)  female(eve)
daughter(eve,ann) - parent(tom,1an)

Hypothesis language
definite clauses

Resulting rule

daughter(X,Y) < parent(Y,X) A female(X)
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Multi-relational Classification

The Sequential Covering Algorithm
Hypothesis (H) := {}
Repeat

find a clause ¢ that covers some positive and no negative examples;
add c to H;
delete all positive examples implied by ¢

Until no more (uncovered) positive examples

Construction of new clauses:
search of the space of clauses
applying some refinement operator
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Multi-relational Classification

Structuring the Space of Clauses

e Substitution 0=V /t,[{]

assignment of terms ¢; to variables V;

 Clauses as sets of atoms (literals)

Head <— Body < Head v - Body
e.g., daughter(X,Y) < parent(Y,X).
{daughter(X,Y),-parent(Y,X)}

Clausec 0 - subsumes clausec'

if there exists a substitution® such thatc6 C ¢!
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Multi-relational Classification

Structuring the Space of Clauses

+F ]
AAMPIES daughter(X,Y) < parent(Y, X)

0 ={X/mary,Y /ann}

cO = daughter(mary,ann) <— parent(ann,mary)

c= daughter(X,Y)< parent(Y,X)
c'=daughter(X,Y)< female(X) A parent(Y,X)
0 =1{

cO =cC ', 1.e.cO —subsumesc'
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Multi-relational Classification

Structuring the Space of Clauses

* Syntactic notion of generality
clause c 1s at least as general as clause ¢ (¢ = J 1t

c 0 —subsumes c'

c 1s more general than clause ¢ iff

c=c' A =(c'sc)

Cc 1S a generalization of c*, ¢* a specialization of ¢

If ¢ does not cover an example, none of 1ts specializations do
If ¢ covers an example, all of 1ts generalizations do
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Multi-relational Classification

Searching the Space of Clauses

» Top-down approach:

start from most general clauses
recursively apply refinement operators

» Refinement operator

0 —subsumption- based
returns all most general specializations of a given clause

* Types of refinements
apply a substitution to a clause or
add a literal to the body of the clause
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Multi-relational Classification

Example
/Chugmﬂ(XY)é\
daughter(X,Y) € X=Y | daughter(X,Y) € parent(Y,X)

daughter(X,Y) € female(X)

daughter(X,Y) < female(X), daughfer(X,Y) €< female(X),

female(Y) parent(Y,X)

(_Refinement graph (lattice)
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Multi-relational Classification

Top-Down Search of Refinement Graphs

Hypothesis (H) = {}

repeat
C .= p(Xb

clause
repeat
build the set S of all refinements of c;

c := the best element of S (according to some heuristic)

until stopping criterion satisfied (c is consistent with B

add c to H;
delete all positive examples implied by ¢ ( using B

until no more (uncovered) positive examples (1.e., H complete)
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Multi-relational Classification

FOIL

[Quinlan 1990]

* Top-down search of refinement graph

* Weig

 Heuristic can be modified to a

1ted information gain as |

heuristic to choose best clause

negative examples

—> handling of noisy data

low clauses covering (some)

* Declarative bias to reduce search space

syntactic restrictions on clauses to be considered

to be provided by the user
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Multi-relational Classification

Declarative Bias

* Argument types / domains (relational DBS)

* Input / output modes of arguments
argument must / must not be instantiated when predicate added

* Parametrized language bias
¢.g., maximum number of variables, literals, . . . per clause

* Clause templates
EX.: P(X,Y)< Q(X,Z)AR(Z,Y)

where P, Q, R denote predicate variables
QDeclarative bias difficult to specify for user (syntactic!)
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Multi-relational Classification

CrossMine [Yin, Han, Yang & Yu 2004]

 Several improvements of FOIL and similar ILP classification methods

 Evaluation of alternative refinement operator requires joins,
which are very expensive DB operations

—> TuplelD propagation (virtual joins)

propagate tupleIDs and their class labels from the target table
to related tables

 Relationship tables have no attributes and may not yield a high information
gain
would never been chosen by FOIL

—> Increased look ahead (two instead of one literal)
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Multi-relational Classification

TuplelD Propagation

Loans

loanID accountID class

2 Target table

3

"

\

ACCA{HIZ‘S

accountID frequency date ID set Class labels
monthly 960227 1,2 2+, 0-
weekly 970610 0+, 0-
monthly 970611 3,4 1+, 1-
weekly 990903 0+, 0-

Related table
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Regression Analysis

Prediction

Commonality with classification

» First, construct a model
* Second, use model to predict unknown value
Major method for prediction is regression

— Simple and multiple regression

— Linear and non-linear regression

Difference from classification

 C(lassification refers to predict categorical class label

 Prediction models continuous-valued functions
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Regression Analysis

Linear Regression

Predict the values of the response variable y based on a linear
combination of the given values of the predictor variable(s) x;

d
y=a,+ E a.x,
. . . 1. L
Simple regression: one predictor variable = regression line

Multiple regression: several predictor variables > regression plane
Residuals: differences between observed and predicted values

=<

Use the residuals to measure the model fit
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Regression Analysis

Linear Regression

d
y(i) = (i) +e(i) = a, + Eajxj(i)+e(i), l<is<n
y: vector of the y values for the n traiﬁﬁ%g objects

X: matrix of the values of the d predictor variables for the » training objects (and an

additional column of 1s)
e: vector of the residuals for the n training objects

Matrix notation:

y=Xa+e
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Regression Analysis

Linear Regression
n n d
e Optimization goal: minimize E e(i)2 _ E [)/ (l) _E . .(i)]2
- L & J7
e Solution: ol T
. Computation%l i_ssgu)e(s X)Xy

— XX must be invertible
Problems 1f linear dependencies between predictor variables

— Solution may be unstable
If predictor variables almost linear dependent

Equation solving e.g. using LU decomposition or SVD
Runtime complexity O(d? n + d°)
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Regression Analysis

Locally Weighted Regression

Limitations of linear regression
* Only linear models
* One global model

Locally weighted regression

Construct an explicit approximation to f over a local neighborhood of query
instance xq

Weight the neighboring objects based on their distance to xq
Distance-decreasing weight K

Related to nearest neighbor classification

—> Minimize the squared local weighted error
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Regression Analysis

Locally Weighted Regression

Local weighted error
* W.r.t. query instance xg
* Arbitrary approximating function
« Pairwise distance function d

e Three major alternatives:

E(x )-— (£ (¥)- f(x))2

x € k_ nearest “neighbors of Xq

E(xq>=;x SL)-F@PK (g 0)

E(xg)=1 S (f(0)- 7 (2K (d(x, )

x € k_nearest “neighbors of _ Xq
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Regression Analysis

Discussion

+ Strong mathematical foundation

+ Simple to calculate and to understand
For moderate number of dimensions

+ High classification accuracy
In many applications

- Many dependencies are non-linear
Can be generalized

- Model is global

Cannot adapt well to locally different data distributions
But: Locally weighted regression
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