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Introduction

The Classification Problem 

• Let O be a set of objects of the form (o1, . . ., od)  
   with attributes Ai, 1 ≤ i ≤ d, and class membership ci, ci ∈ C = {c1 , . . .,  ck}  
• Wanted:  
    class membership for objects from D \ O  
    a classifier K : D → C  
• Difference to clustering 
       classification: set of classes C known apriori 
           clustering: classes are output 
• Related problem: prediction 
    predict the value of a numerical attribute  
   



3

Introduction

Training 
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification 
Algorithm

if rank = ‘professor’ 
    or years > 6 
then tenured = ‘yes’ 

Classifier 
(Model)

Unseen Data

(Jeff, Professor, 4)

Tenured? 
yes 
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Evaluation of Classifiers

Introduction 
• Given a sample of labeled data (O)   

• Want to build a classifier that labels the entire population  
   in particular, D \ O  

• Can only estimate the performance of the classifier on unseen data 

• Need separate, disjoint training and test data (all labeled) 

– Training data 
 for training the classifier (model construction) 
– Test data 
 to evaluate the trained classifier
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Evaluation of Classifiers

Approaches 
•  Train-and-Test  

– partition set O into two (disjoint) subsets: Training data and Test data 
– not recommended for small O 

• m-fold cross validation 
  - partition set O into m same size subsets  
   - train m different classifiers using a different one of these m subsets  
    as test data and the other subsets for training    

  - average the evaluation results of the m classifiers 

  - appropriate also for small O
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Evaluation of Classifiers

Evaluation Criteria 
• Classification accuracy 
• Interpretability 

 e.g. size of a decision tree 
 insight gained by the user 

• Efficiency 
  of model construction 
  of model application  

• Scalability for large datasets  
  for secondary storage data 
• Robustness 

  w.r.t. noise and unknown attribute values 

   Classification as optimization problem: score of a classifier
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Evaluation of Classifiers

Classification Accuracy 
•  Let K be a classifier, TR ⊆ O  the training data, TE ⊆ O the test data.  
   C(o): actual class of object o.  
• classification accuracy of K on TE: 

• classification error 

   aggregates over all classes ci ∈ C  
   not appropriate if minority class is most important
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Evaluation of Classifiers

Confusion Matrix 
•  Let c1 ∈ C be the target (positive) class, the union of all other classes the  
    contrasting (negative) class. 
• Comparing the predicted and the actual class labels, we can distinguish four  
  different cases: 

            Confusion matrix

Predicted as positive Predicted as negative

Actually positive True Positive (TP) False Negative (FN)

Actually negative False Positive (FP) True Negative (TN)
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Evaluation of Classifiers

Precision and Recall 
•  We define the following two measures of K w.r.t. the given target class: 

• There is a trade-off between precision and recall. 
• Therefore, we also define a measure combining precision and recall:
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Evaluation of Classifiers

ROC Curves 
•  F-Measure captures only one of the possible trade-offs between precision and recall 
(or between TP and FP)  
• True positive rate: percentage of positive data correctly predicted 
• False positive rate: percentage of negative data falsely predicted as positive
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• ROC (Receiver Operating Characteristic)  
  Curve: plots true positive rate  
   w.r.t. false positive rate 
• area under ROC as quantitative measure 
 ideally = 1 Classifier 1 

Classifier 2 
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Evaluation of Classifiers

Model Selection 
•  Given two classifiers and their (estimated!) classification accuracies      
          e.g., obtained from m-fold cross-validation 

• Which of the classifiers is really better? 

• Naive approach: just take the one with higher mean classification accuracy 

• But: classification accuracy may vary greatly among the m folds 

• Differences in classification accuracies may be insignificant  
   due only to chance
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Evaluation of Classifiers

Model Selection 
•  We measure the classification error on a (small) test dataset O ⊆ X . 

• Questions: 
  How to estimate the true classification error on the whole instance space X? 
  How does the deviation from the observed classification error depend on the  
  size of the test set? 
• Random experiment to determine the classification error on test set (of size n): 
  repeat n times  
 (1) draw random object from  X 
 (2) compare predicted vs. actual class label for this object 
• Classification error is percentage of misclassified objects 
  ! observed classification error follows a Binomial distribution  
    with mean = true classification error (unknown)
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Evaluation of Classifiers

Binomial distribution  
• n repeated tosses of a coin with unknown probability p of head  
   head = misclassified object 
• Record the number r of heads (misclassifications) 
• Binomial distribution defines probability for all possible values of r: 
 
 

• Random variable Y counting the number of heads in n coin tosses:
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Evaluation of Classifiers

Estimating the True Classification Error 

• We want to estimate the unknown true classification error (p). 
• Estimator for p:  
• We want also confidence intervals for our estimate. 
• Standard deviation for the true classification error (Y/n): 
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Evaluation of Classifiers

Estimating the True Classification Error  

• For sufficiently large values of n, the Binomial distribution can be approximated  
   by a Normal distribution with the same mean and standard deviation.  
• Random variable Y Normal distributed with mean m and standard deviation s  
  and y be the observed value of Y: 
        the mean of Y falls into the following interval with a probability of N % 

• In our context, N % confidence interval for the true classification error:  
 
             interval size decreases with increasing n 

       interval size increases with increasing N and zN
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Decision Trees

Introduction 

    disjunction of conjunction of attribute constraints  
    and hierarchical structure

Autotype

= Truck

Age

> 60 ≤ 60

Risk = high

Risk = low

≠  Truck

Risk = low

ID Age Autotype Risk
1 23 Family high
2 17 Sports high
3 43 Sports high
4 68 Family low
5 32 Truck low
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Decision Trees

Introduction 
• A decision tree is a tree with the following properties:   

– An inner node represents an attribute. 
– An edge represents a test on the attribute of the father node. 
– A leaf represents one of the classes of C.  

• Construction of a decision tree 
  Based on the training data  
  Top-Down strategy  
• Application of a decision tree 
  Traversal of the decision tree from the root to one of the leaves 
  Unique path 
    Assignment of the object to class of the resulting leaf
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Decision Trees

Construction of Decision Trees 

Base algorithm 
• Initially, all training data records belong to the root.  
• Next attribute is selected and split (split strategy). 
• Training data records are partitioned according to the chosen split. 
• Method is applied recursively to each partition. 

    local optimization method (greedy) 

Termination conditions 
• No more split attributes. 
• All (most) training data records of the node belong to the same class. 
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Decision Trees

Example 

Is today a day to play tennis?

Day Outlook Temperature Humidity Wind PlayTennis?
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rainy mild high weak yes
5 rainy cool normal weak yes
6 rainy cool normal strong no
7 . . . . . . . . . . . . . . .
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Decision Trees

Example

„no“ „yes“

high normal

„no“ „yes“

strong weak

„yes“

sunny overcast rainy

Humidity Wind

Outlook
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Decision Trees

Types of Splits 
Categorical attributes 
• Conditions of the form „attribute = a“ or „attribute ∈ set“  
• Many possible subsets 

Numerical attributes 
• Conditions of the form „attribute < a“ 
• Many possible split points

attribute

= a1 = a2 = a3

attribute

∈ s1 ∈ s2

attribute

< a ≥ a
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Decision Trees

Quality Measures for Splits 

Given 
• a set T of training data 
• a disjoint, exhaustive partitioning T1, T2, . . . , Tm of T  

• pi the relative frequency of class ci in T 

Wanted 
• A measure of the impurity of set S (of training data) w.r.t. class labels  
• A split of T in T1, T2, . . . , Tm minimizing this impurity measure  

   information gain, gini-index
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Decision Trees

Information Gain 
• Entropy: minimal number of bits to encode a message 
  to transmit the class of a random training data record  
• Entropy for a set T of training data: 

entropy(T) = 0, if pi = 1 for some i 
entropy(T) = 1 for k = 2 classes with pi = 1/2 

• Let attribute A produce the partitioning T1, T2, . . . , Tm of T. 

• The information gain of attribute A w.r.t T is defined as
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Decision Trees

Gini-Index 

• Gini index for a set T of training data records 

  low gini index ⇔ low impurity,  
  high gini index ⇔ high impurity 

• Let attribute A produce the partitioning T1, T2, . . . , Tm of T. 
• Gini index of attribute A w.r.t. T is defined as
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Decision Trees

Example 

Humidity yields the higher information gain

Humidity

high normal

3 „ yes“ 4 „no“ 6 „ yes“ 1 „no“
Entropy = 0.985 Entropy = 0.592

9 „yes“ 5 „no“ entropy = 0.940

151.0592.0
14
7985.0

14
794.0),( =⋅−⋅−=HumidityTnGainInformatio

048.00.1
14
6811.0

14
894.0),( =⋅−⋅−=WindTnGainInformatio

3 „yes“ 3 „no“

Wind

weak stark

6 „ yes“ 2 „no“
Entropy = 0.811 Entropy = 1.0

9 „yes“ 5 „no“ entropy = 0.940
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Decision Trees

Overfitting 
Overfitting: there are two decision trees T and T’ with 

• T has a lower error rate than T’ on the training data, but 
• T’ has a lower test error rate than T.

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Tree size

on training data 
on test data



27

Decision Trees

Approaches for Avoiding Overfitting 

• Removal of erroneous training data 
  in particular, inconsistent training data 

• Choice of appopriate size of training data set   
  not too small, not too large 

• Choice of appropriate minimum support 
  minimum support:  
      minimum number of training data records belonging to a leaf node 

     minimum support >> 1
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Decision Trees

Approaches for Avoiding Overfitting 
• Choice of appropriate minimum confidence 
   minimum confidence: minimum percentage of the majority class of a leaf 

              node 

     minimum confidence << 100%  

     leaves can also absorb noisy / erroneous training data records 

• Subsequent pruning of the decision tree 
  remove overfitting branches 

     see next section 
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Decision Trees

Error Reduction-Pruning [Mitchell 1997] 
  

• Train-and-Test paradigm 
• Construction of decision tree T for training data set TR.  
• Pruning of T using test data set TE  

– Determine subtree of T such that its removal leads to the maximum 
reduction of the classification error on TE. 

– Remove this subtree. 
– Stop, if no more such subtree. 

   only applicable if enough labled data available
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Decision Trees

Minimal Cost Complexity Pruning  
[Breiman, Friedman, Olshen & Stone 1984] 

  

• Cross-Validation paradigm 
    Applicable even if only small number of labled data available 

• Pruning of decision tree using training data set 
  Cannot use classification error as quality measure 
• Novel quality measure for decision trees 
  Trade-off between (observed) classification error and  tree size 
  Weighted sum of classification error and  tree size 

    Small decision trees tend to generalize better to unseen data
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Decision Trees

Notions 
• Size |T| of decision tree T: number of leaves 
• Cost complexity of T w.r.t. training data set TR and  complexity parameter α ≥ 0: 

• The smallest minimizing subtree T(α) of T w.r.t. α has the following properties : 

 (1) There is no subtree of T with smaller cost complexity.  
 (2) If T(α) and T‘ satisfy condition (1), then T(α) is a subtree of T‘. 

• α = 0: T(α) = T  
• α = ∞: T(α) = root of T  
• 0 < α < ∞: T(α) = true subtree of T (more than the root)

||)(),( TTerrorTCC TRTR ⋅+= αα
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Decision Trees

Notions 

• Te: subtree of T with root e, {e}: tree consisting only of node e 

  T > T‘: subtree relationship 

• For small values of α: CCTR(Te, α) < CCTR({e}, α),  

  for large values of α: CCTR(Te, α) > CCTR({e}, α).  

• critical value of α w.r.t. e 

αcrit: CCTR(Te, αcrit) = CCTR({e}, αcrit) 

    for α ≥ αcrit the subtree of node e should be pruned 

• weakest link: node with minimal αcrit value
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Decision Trees

Method 

• Start with complete decision tree T.  

• Iteratively, each time remove the weakest link from the current tree. 

• If several weakest links: remove all of them in the same step.   

   sequence of pruned trees T(α1) > T(α2) > . . . > T(αm)  
   with α1 < α2 < . . . < αm 

•  Selection of the best T(αi)  
  estimate the true classification error of all T(α1), T(α2), . . ., T(αm)  
  performing l-fold cross-validation on the training data set
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Decision Trees

Example 

    T7 has the lowest estimated error 
    and the lowest true error

i |Ti| training error  estimated error true error
1 71 0,0 0,46 0,42
2 63 0,0 0,45 0,40
3 58 0,04 0,43 0,39
4 40 0,10 0,38 0,32
5 34 0,12 0,38 0,32
6 19 0,2 0,32 0,31
7 10 0,29 0,31 0,30
8 9 0,32 0,39 0,34
9 7 0,41 0,47 0,47

10 . . . . . . . . . . . .
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Bayesian Classification

Introduction 
• When building a probabilistic classifier, we would like to find the classifier  
  (hypothesis) h that has the maximum conditional probability given the      
   observed data, i.e. 
    
• But how to compute these conditional probabilities for all possible classifiers h? 
• Bayes theorem 
• Applying Bayes theorem, we obtain    
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Bayesian Classification

Introduction 

• The more training data D we have, the higher becomes the influence of  
  P(D\h). 
• P(h) is subjective. 
• P(h) can, e.g., favor simpler over more complex hypotheses. 
• If there is no prior knowledge, i.e. P(h) uniformly distributed, then we  
  obtain the Maximum Likelihood Classifier as a special case.
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Bayesian Classification

Introduction 

• When applying a learned hypothesis h to classify an object o,  
 we could use the following decision rule:         
• h  depends on the attribute values of o, i.e. o1, . . ., od. 

• Therefore we determine     
• Applying Bayes theorem, we obtain    
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Bayesian Classification

Naive Bayes Classifier 
• Estimate the P(cj) using the observed frequencies of the individual classes. 

• How to estimate the P(o1, . . ., od | cj)? 

• Assumption: 

– Attribute values oi are conditionally independent, given class cj 

–                         are easier to estimate from the training data than  
  P(o1, . . ., od | cj) 

    

• Decision rule of the Naive Bayes-Classifier

argmax P c P o c
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Bayesian Classification

Bayesian Networks 

• Naive Bayes-Classifier is very efficient, but assumptions may be unrealistic  

     suboptimal classification accuracy 

• Often, only some attributes are dependent, most are independent  
   (given some class) 

• Bayesian networks (Bayesian belief networks / Bayes nets)  
     allow you to specify all variable dependencies,  
     all other variables are assumed to be conditionally independent 

• Network respresents subjective, a-priori beliefs
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Bayesian Classification

Bayesian Networks 

• Graph with nodes = random variable (attribute) and   
     edge = conditional dependency  
• Each random variable is (for given values of the predecessor variables)  
    conditionally independent from all variables that are no successors.  

• For each node (random variable): Table of conditional probabilities  
     given values of the predecessor variables 

   Bayesian network can represent causal knowledge
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Bayesian Classification

Example 

  For given values of FamilyHistory and Smoker, the value of Emhysema does 
not provide any additional information about LungCancer

Family 
History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

(FH,S)

(FH,~S)

(~FH,S)

(~FH,~S)

LC

~LC

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Conditional probabilities  
 for LungCancer
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Bayesian Classification

Training Bayesian Networks 
• With given network structure and fully observable random variables  
 all attribute values of the training examples known  
 estimate conditional probability tables by calculating the relative frequencies 

• With given network structure and partially known random variables  
 some attribute values of the training examples unknown  
 expectation maximization (EM) algorithm  
 random initialization of the unknown attribute values 

• With apriori unknown network structure (very difficult!)  
    assume fully observable random variables  
 heuristic scoring functions for alternative network structures  
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Bayesian Classification

Interpretation of Raster Images 
• Automatical interpretation of d raster images of a given region 
  for each pixel:  a d-dimensional vector of grey values (o1, . . ., od)  
• Assumption: different kinds of landuse exhibit characteristic behaviors of  
   reflection / emission

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

Earth Surface Feature-Space

Band 1

Band 2
16.5 22.020.018.0

8

12

10

•

(12),(17.5)

(8.5),(18.7)

•
• •

•

•
•• •

••

••••
1 1 1 2
1 1 2 2
3 2 3 2
3 3 3 3

Cluster 1 Cluster 2

Cluster 3

Agricultural
Water

Urban
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Bayesian Classification

Interpretation of Raster Images 
• Application of the (optimal) Bayes classifier 
• Estimate the P(o1, . . ., od | cj) without assuming conditional indepency 
• Assume a d-dimensional Normal distribution of the grey value vectors  
  of a given class

Decision Surfaces

Water

Urban

Agricultural

Probability of 
Class Membership
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Bayesian Classification

Method 

• Estimate from the training data 

  µi:  d-dimensional mean vector of all feature vektors of class ci 

  Σi:      covariance matrix of class ci 

• Problems of the decision rule 
- Likelihood for the chosen class 
  very small 
- Likelihood for several 
  classes similar

d d⋅

unclassified regions

Threshold
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Bayesian Classification

Discussion 
+ Optimality property  
 Standard for comparison with other classifiers 
+ High classification accuracy in many applications 
+ Incrementality  
   classifier can easily be adapted  to new training objects 
+ Integration of domain knowledge 

- Applicability 
   the conditional probabilities may not be available 
- Maybe inefficient  
     For high numbers of features  
     in particular, Bayesian networks
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Nearest-Neighbor Classification

Motivation 

• Optimal Bayes classifier assuming a d-dimensional Normal distribution 

   Requires estimates for µi and Σi  

 Estimate for µi needs much less training data 

• Goal 

 classifier using only the mean vectors per class 

     Nearest-neighbor classifier
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Nearest-Neighbor Classification

Example

Dog

Wolf
Wolf

Dog

µDog

Dog
 q   Cat

Cat

CatCat

µWolf

µCat

Classifier: 
q is a dog!

Instance-Based Learning 
Related to Case-Based Reasoning
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Nearest-Neighbor Classification

Overview  

Base method 

• Training objects o as feature (attribute) vectors o = (o1, . . ., od)  
• Calculate the mean vector µi for each class ci  
• Assign unseen object to class ci with nearest mean vector µi 

Generalisations 

• Use more than one representative per class 
• Consider k > 1 neighbors 
• Weight the classes of the k–nearest neighbors
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Nearest-Neighbor Classification

Notions 
• Distance function 
 defines similarity (dissimilarity) for pairs of objects 

• k: number of neighbors considered 

• Decision Set  
   set of k-nearest neighbors considered for classification 

• Decision rule 
 how to determine the class of the unseen object  
    from the classes of the decision set?  
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Nearest-Neighbor Classification

Example 

               classes „+“ and „-“ 

Uniform weight for the decision set 
 k = 1: classification as „+“, k = 5 classification as „−“  
Inverse squared distance as weight for the decision set 
 k = 1 and k = 5: classification as „+“

+
+

−

− −

+ +

−

−

−
+

+

−

−

−

+

+

+

Decision set for k = 1

Decision set for k = 5
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Nearest-Neighbor Classification

Choice of Parameter k 
• „too small“ k: very sensitive to outliers 
•„too large“ k: many objects from other clusters (classes) in the decision set 
• medium k: highest classification accuracy, often 1 << k < 10 

       x: to be classified

x

Decision set for k = 1

Decision set for k = 7

Decision set for k = 17
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Nearest-Neighbor Classification

Decision Rule 

Standard rule 
 Choose the majority class within the decision set 

Weighted decision rule  
 Weight the classes of the decision set 

• By distance 

• By class distribution (often skewed!) 
  class A: 95 %, class B 5 % 
  Decision set = {A, A, A, A, B, B, B} 
  Standard rule  ⇒ A, Weighted rule  ⇒ B
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Nearest-Neighbor Classification

Index Support for k-Nearest-Neighbor Queries 
• Balanced index tree (such as X-tree or M-tree) 
• Query point p  
• PartitionList 
  BBs of subtrees that need to be processed, sorted in ascending order  
   w.r.t. MinDist to p
• NN 
  Nearest neighbor of p in the data pages read so far

p
MinDist(A,p) MinDist(B,p)A

B
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Nearest-Neighbor Classification

Index Support for k-Nearest-Neighbor Queries 
• Remove all BBs from PartitionList that have a larger distance to p  
  than the currently best NN of p 

• PartitionList is sorted in ascending order w.r.t. MinDist to p 

• Always pick the first element of PartitionList 
 as the next subtree to be explored  
  Does not read any unnecessary disk pages! 

• Query processing limited to a few paths of the index structure 

     Average runtime O(log n) for „not too many“ attributes 

     For very large numbers of attributes: O(n) 
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Nearest-Neighbor Classification

Discussion 
+ Local method 
   Does not have to find a global decision function (decision surface) 
+ High classification accuracy  
   In many applications 
+ Incremental  
   Classifier can easily be adapted to new training objects 
+ Can be used also for prediction 

- Application of classifier expensive  
   Requires k-nearest neighbor query 
- Does not generate explicit knowledge about the classes
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Support Vector Machines 

Introduction [Burges 1998] 

Input 
  a training set  
  of objects      and their known classes  

Output 
  a classifier  

Goal 
   Find the best separating hyperplane (e.g., lowest classification error) 

   Two-class problem

}1,1{ +−∈iy

)},(),...,,{( 11 nn yxyxS = Xxi ∈

}1,1{: +−→Xf
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Support Vector Machines 

Introduction

w

Half-space: 
w.x + b < 0 
(Class –1)

Half-space: 
w.x + b > 0 
(Class +1)

Hyperplane: w.x + b = 0

• Classification based on the sign 
   of the decision function 

• “.” denotes the inner product  
   of two vectors 

bxwxf bw += .)(,
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Support Vector Machines 

Introduction

Choose hyperplane 
with largest margin 
(maximum distance  
to closest training  
object) 
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Support Vector Machines 

Introduction

w.x + b = 0

γ: margin

w.x + b = +1

x1

x2

w. x1 + b = 0 
w. x2 + b = 1 

à w. (x2 - x1) = 1 

à ||w|| || x2 - x1 || cos 0 = 1γ

||||
1|||| 12 w

xx =−=γ
w
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Support Vector Machines 

Method 
Problem 
• Minimize ||w||2 

• Under the constraints 
Dual problem 
• Introduce dual variables αi for each training object i 
• Find αi maximizing 

  under the constraints         and 

    Quadratic programming problem
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Support Vector Machines 

Method

w

0=iα

0=iα

0>iα

• Only training objects with αi > 0 
   contribute to w 
• These training objects are the  
  support vectors  

   Typically, number of  
   support vectors << n 
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Support Vector Machines 

Non-Linear Classifiers

Ψ

Transformation 
of space X
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Support Vector Machines 

Non-Linear Classifiers 

• Decision function   

• Kernel of two objects 

• Explicit computation of           is not necessary 

• Example:  

bxwxf bw +Ψ= )(.)(,

)'().()',(:', xxxxKXxx ΨΨ=∈∀

)(xΨ

)1,2,2,2,,()( 2121
2
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Support Vector Machines 

Kernels 

• Kernel is a similarity measure 
• K(x,x’) is a kernel iff  

  

  is a symmetric and positive definite matrix
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Support Vector Machines 

SVM for Protein Classification [Leslie et al 2002] 

• Two sequences are similar when they share many common substrings  
  (subsequences) 
•  
 
 and |s| denotes the length of string s 

• Very high classification accuracy for protein sequences 
• Variation of the kernel (when allowing gaps in the matching subsequences) 

 length(s,x): length of the subsequence of x matching s

parameteraiswhere)',( || λλ∑=
substringcommons

sxxK

∑ +=
substringcommons

xslengthxslengthxxK )',(),()',( λ
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Support Vector Machines 

SVM for Prediction of Translation Initiation Sites [Zien et al 2000] 

• Translation initiation site (TIS): starting position of a protein coding region in DNA 

  All TIS start with the triplet “ATG” 

• Problem: given an “ATG” triplet, does it belong to a TIS? 

• Representation of DNA  
  Window of 200 nucleotides around candidate “ATG” 

  Encode each nucleotide with a 5 bit word (00001, 00010, . . ., 10000) for  
   A, C, G, T and unknown 

  ! Vectors of 1000 bits
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Support Vector Machines 

SVM for Prediction of Translation Initiation Sites  
• Kernels 

    d = 1: number of common bits  
    d = 2: number of common pairs of bits  
    . . . 

 Locally improved kernel: compare only small window around “ATG” 

• Experimental results  
  Long range correlations do not improve performance  
  Locally improved kernel performs best  
  Outperforms state-of-the-art methods 

d)(x.x')',( =xxK
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Support Vector Machines 

Discussion 

+ Strong mathematical foundation 
+ Find global optimum 
+ Scale well to very high-dimensional datasets 
+ Very high classification accuracy 
   In many challenging applications  

-  Inefficient model construction 
  Long training times (~ O (n2)) 
-  Model is hard to interpret 
  Learn only weights of features  
  Weights tend to be almost uniformly distributed 
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Multi-relational Classification 

The Single Table Assumption 
• Existing data mining algorithms expect data in a single table 
• But in reality, DBs consist of multiple tables 
• Naive solution: join all tables into a single one (universal 
   relation) and apply (single-relational) data mining algorithm 
 

Client# Date Item Quantity

2765 02/25/2005 A 5

3417 02/26/2005 B 1

1005 02/26/2005 C 12

. . .

Client# Name Age

1005 Jones 35

1010 Smith 52

1054 King 27

. . .

       Purchases    Clients
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Multi-relational Classification 

The Single Table Assumption 
• Universal relation 
 

There are no more client entities!  
What if rule depends on how many different items  
  were purchased by a client? 
        

Client# Date Item Quantity Name Age

1005 02/26/2005 C 12 Jones 35

1005 02/28/2005 B 2 Jones 35

. . . . . . . . . . . . . . . . . .

2765 02/25/2005 A 5 Bornman 23

. . .
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Multi-relational Classification 

Aggregating Related Tables  
• Enhancing „target table“ by aggregates of the related tuples  
 in other tables 
• Aggregation operators: COUNT, SUM, MIN, AVG, . . . 
 

Client# Name Age Overall 
Quantity of  
Item A

Overall 
Quantity of  
Item B

. . .

1005 Jones 35 0 10 . . .

1010 Smith 52 35 0 . . .

. . . . . .

        More meaningful! But what aggregates to consider?  
         And what if attributes of the other clients that have purchased  
 the same item are relevant?  
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Multi-relational Classification 

Multi-Relational Data Mining  

• Data mining methods for multi-table databases 
• Pattern search space much larger than for single tables 
• Testing the validity of a pattern more expensive 
• Similar data mining tasks  
   classification, clustering, association rules, . . .  
   . . . plus some tasks specific to the multi-relational case 
• Single table (propositional) algorithms can be upgraded  
 to multiple tables (first order predicate logic) 
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Multi-relational Classification 

Inductive Logic Programming (ILP)  

• Goal: learn logic programs from example data 
• Knowledge representation is expressive and understandable  
• Examples: tuples from multiple tables 
• Hypotheses: sets of rules 
• Use of background knowledge 
  also set of rules 
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Multi-relational Classification 

Logic Programs and Databases 
• Logic program: set of clauses 
• Clause: rule of the form „Head " Body“  
 where Head / Body consist of atoms connected using the logical  
  operators  
• Atom: predicate applied to some terms 
• Predicate: boolean function with arguments (terms) 
• Term: constant (e.g., mary), variable (e.g., X),  
  function symbol applied to some term

¬∨∧ and,
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Multi-relational Classification 

Logic Programs and Databases 
• Example rule 

• Definite clauses: exactly one atom in the head 

• Horn clauses 
   One (positive) atom in the head, conjunction of body atoms 

),(),(),( YXparentYXmotherYXfather ←∨

),(),(),( YXmotherYXfatherYXparent ∨←

)(),(),( YfemaleYXparentYXmother ∧←
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Multi-relational Classification 

Classical Rule Induction Task 
• Given: 
 set P of examples from target relation (positive examples)  
 set N of examples not from target relation (negative examples) 
 background predicates B 
 hypothesis (rule) language 
• Find a set of rules that explains all positive and none of the  
 negative examples  
 
   consistent and complete set of rules
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Multi-relational Classification 

Example 

Training examples      Background knowledge 
 daughter(mary,ann)  +    parent(ann,mary) female(ann) daughter(eve,tom)  
 +    parent(ann,tom)  female(mary)  
 daughter(tom,ann)   -    parent(tom,eve)  female(eve)  
 daughter(eve,ann)   -    parent(tom,ian)  
Hypothesis language 
 definite clauses   
Resulting rule

)(),(),( XfemaleXYparentYXdaughter ∧←
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Multi-relational Classification 

The Sequential Covering Algorithm 
Hypothesis (H) := {} 
Repeat 
  find a clause c that covers some positive and no negative examples;  
  add c to H; 
  delete all positive examples implied by c  
Until no more (uncovered) positive examples  

Construction of new clauses:  
 search of the space of clauses  
 applying some refinement operator

}{cHB ∪!
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Multi-relational Classification 

Structuring the Space of Clauses 

• Substitution  
  assignment of terms ti to variables Vi 

• Clauses as sets of atoms (literals)  
  

• 

}/,,/{ 11 nn tVtV !=θ

'thatsuchonsubstitutiaexiststhereif
'clauseClause

cc
csubsumesc

⊆

−

θθ

θ

)},(),,({
:),(),(.,.

XYparentYXdaughter
XYparentYXdaughterge

BodyHeadBodyHead

¬

←

¬∨⇔←
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Multi-relational Classification 

Structuring the Space of Clauses 

• Examples  
     
   

'subsumes.e.i,'
{}
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Multi-relational Classification 

Structuring the Space of Clauses 

• Syntactic notion of generality 
  clause c is at least as general as clause c‘ (   ) iff 

  c is more general than clause c‘ iff 
   
 c is a generalization of c‘, c‘ a specialization of c   
   

'cc ≤
'csubsumesc −θ

)'(' cccc ≤¬∧≤

If c does not cover an example, none of its specializations do 
If c covers an example, all of its generalizations do
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Multi-relational Classification 

Searching the Space of Clauses 

• Top-down approach: 
 start from most general clauses  
 recursively apply refinement operators 
• Refinement operator 

   returns all most general specializations of a given clause 
• Types of refinements  
   apply a substitution to a clause or  
   add a literal to the body of the clause

basednsubsumptio −−θ
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Multi-relational Classification 

Example 

           daughter(X,Y) "  

daughter(X,Y) " X=Y             daughter(X,Y) " parent(Y,X)        
    daughter(X,Y) " female(X) 

  daughter(X,Y) " female(X),          daughter(X,Y) " female(X),         
        female(Y)            parent(Y,X)  

      

  Refinement graph (lattice)

. . .

. . .
. . .
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Multi-relational Classification 

Top-Down Search of Refinement Graphs 
Hypothesis (H) := {} 
repeat 
  clause  
  repeat 
   build the set S of all refinements of c; 
   c := the best element of S (according to some heuristic) 
  until stopping criterion satisfied (c is consistent       ) 
  add c to H; 
  delete all positive examples implied by c (     );  
until no more (uncovered) positive examples (i.e., H complete)

HB!with

←= ),,(: 1 nXXpc !

HB!using
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Multi-relational Classification 

FOIL [Quinlan 1990] 

• Top-down search of refinement graph 
• Weighted information gain as heuristic to choose best clause 
• Heuristic can be modified to allow clauses covering (some)  
 negative examples  
   ! handling of noisy data 
• Declarative bias to reduce search space  
  syntactic restrictions on clauses to be considered  
  to be provided by the user
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Multi-relational Classification 

Declarative Bias 

• Argument types / domains (relational DBS) 
• Input / output modes of arguments  
  argument must / must not be instantiated when predicate added 
• Parametrized language bias  
  e.g., maximum number of variables, literals, . . . per clause   
• Clause templates  
  Ex.: 
       where P, Q, R denote predicate variables 
    Declarative bias difficult to specify for user (syntactic!)

),(),(),( YZRZXQYXP ∧←
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Multi-relational Classification 

CrossMine   [Yin, Han, Yang & Yu 2004] 

• Several improvements of FOIL and similar ILP classification methods 
• Evaluation of alternative refinement operator requires joins,  
   which are very expensive DB operations 
  ! TupleID propagation (virtual joins)  
   propagate tupleIDs and their class labels from the target table  
   to related tables 
• Relationship tables have no attributes and may not yield a high information  
  gain  
  would never been chosen by FOIL 
  ! Increased look ahead (two instead of one literal) 
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Multi-relational Classification 

TupleID Propagation
Loans

loanID accountID class

1 124 +

2 124 +

3 45 -

4 45 +

Accounts

accountID frequency date ID set Class labels

124 monthly 960227 1, 2 2+, 0-

108 weekly 970610 0+, 0-

45 monthly 970611 3,4 1+, 1-

67 weekly 990903 0+, 0-

Target table

Related table
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Regression Analysis 

Prediction 

Commonality with classification 
• First, construct a model 
• Second, use model to predict unknown value 

Major method for prediction is regression 
– Simple and multiple regression 
– Linear and non-linear regression 

Difference from classification 
• Classification refers to predict categorical class label 
• Prediction models continuous-valued functions
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Regression Analysis 

Linear Regression 

• Predict the values of the response variable y based on a linear 
combination of the given values of the predictor variable(s) xi  

• Simple regression: one predictor variable ! regression line 
• Multiple regression: several predictor variables ! regression plane 
• Residuals: differences between observed and predicted values  
 
  Use the residuals to measure the model fit
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Regression Analysis 

Linear Regression 

• y:  vector of the y values for the n training objects 

• X: matrix of the values of the d predictor variables for the n training objects (and an 

additional column of 1s) 

• e: vector of the residuals for the n training objects 

• Matrix notation:
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Regression Analysis 

Linear Regression 

• Optimization goal: minimize 

• Solution: 
• Computational issues 

– XT X must be invertible  
Problems if linear dependencies between predictor variables 

– Solution may be unstable  
If predictor variables almost linear dependent  

 Equation solving e.g. using LU decomposition or SVD  
Runtime complexity O(d2 n + d3)
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Regression Analysis 

Locally Weighted Regression 
Limitations of linear regression 
• Only linear models 
• One global model 

Locally weighted regression  
 Construct an explicit approximation to f over a local neighborhood of query 

instance xq 
 Weight the neighboring objects based on their distance to xq 

 Distance-decreasing weight K 
 Related to nearest neighbor classification 

 ! Minimize the squared local weighted error
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Regression Analysis 

Locally Weighted Regression 

Local weighted error 
• W.r.t. query instance xq 

• Arbitrary approximating function  
• Pairwise distance function d 
• Three major alternatives:
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Regression Analysis 

Discussion 

+ Strong mathematical foundation 
+ Simple to calculate and to understand  
  For moderate number of dimensions 
+ High classification accuracy 
   In many applications 

-  Many dependencies are non-linear  
  Can be generalized 
-  Model is global 
  Cannot adapt well to locally different data distributions  
  But: Locally weighted regression 


