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Clustering Approaches

Partition-based algorithms: build several partitions then assess them
w.r.t. some criteria.

Hierarchy-based algorithms: create a hierarchical decomposition of
the objects w.r.t. some criteria.

Density-based algorithms: based on the notions of density and
connectivity.
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Characteristics

extensibility

ability to handle different data types

prior for parameter settings

ability to handle noisy data and outliers
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k-means

Inductive database vision

Querying a clustering:

{X ∈ P | Q(X ,D)}
where:

D is a set of objects O associated with a similarity measure,

P is {(C1, . . . ,Ck) ∈ (2O)k |


∀i = 1..k ,Ci 6= ∅
∀j 6= i ,Ci ∩ Cj 6= ∅
∪kl=1Cl = O

},

Q is a function to optimize. It quantifies how similar are pairs of
objects in a same cluster and how dissimilar are those in two
different clusters
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∑
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k-means

Exact algorithm

Input: O,D, k ∈ N \ {0}
Output: the clustering of O maximizing f : the sum, over all
objects, of the similarities to the centers of the assigned clusters
Cmax ← ∅
fmax ← −∞
for all k-clustering C of O do

if f (C,D) > fmax then
fmax ← f (C,D)
Cmax ← C

end if
end for
output(Cmax)
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k-means

Number of k-clusterings

Question

How many k-clusterings are enumerated?

The Stirling number

of the second kind, i. e., 1
k!

∑k
t=0(−1)t

(
k
t

)
(k−t)n = O(kn).
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k-means

k-means principles

k-means is a greedy iterative approach that always converges to a
local maximum of the sum, over all objects, of the similarities to
the centers of the assigned clusters.

An iteration consists in two steps:

E Each object is assigned to the cluster whose center is
the most similar (thus defining a clustering);

M The center of each cluster is updated to the mean of
the objects assigned to it.

Initially, the centers of the clusters are randomly drawn. The
procedure stops when, from an iteration to the next one, the
centers of the clusters have not changed much (or at all).
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k-means

2-means with |A| = 1: illustration

2-means clustering of the objects in a one-dimensional space using
the Euclidean distance.

Dataset:
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k-means
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k-means

2-means with |A| = 1: illustration

2-means clustering of the objects in a one-dimensional space using
the Euclidean distance.

Iteration 5:
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k-means

3-means with |A| = 2: illustration

3-means clustering of the objects in a two-dimensional space using
the Euclidean distance.

x y

o1 91 70
o2 129 91
o3 359 243
o4 322 254
o5 100 104
o6 464 113
o7 342 297
o8 410 65
o9 334 329
...

...
...
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k-means

k-means algorithm

Input: O,D, k ∈ N \ {0}
Output: a clustering of O locally maximizing the sum, over all
objects, of the similarities to the centers of the assigned clusters
(µi )i=1..k ← random(D)
repeat

(Ci )i=1..k ← assign cluster(O,D, (µi )i=1..k)
(c , (µi )i=1..k)← update centers(D, (Ci )i=1..k , (µi )i=1..k))

until c
output((Ci )i=1..k)
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k-means

assign cluster

Input: O,D, (µi )i=1..k ∈ (R|A|)k
Output: (Ci )i=1..k the clustering of O such that
∀i = 1..k ,∀j 6= i ,∀o ∈ Ci , s(o, µi ) ≥ s(o, µj)
for all o ∈ O do

a← arg maxi=1..k s(o, µi )
Ca ← Ca ∪ {o}

end for
return((Ci )i=1..k)
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k-means

Complexity of assign cluster

Question

Assuming the computation of a similarity is linear in the num-
ber of attributes |A|, what is the complexity of assign cluster?

O(k|O × A|).

14 / 52
Marc Plantevit Clustering

N



k-means

Complexity of assign cluster

Question

Assuming the computation of a similarity is linear in the num-
ber of attributes |A|, what is the complexity of assign cluster?
O(k|O × A|).

14 / 52
Marc Plantevit Clustering

N



k-means

update centers

Input: D, (Ci )i=1..k a clustering of O, (µi )i=1..k ∈ (R|A|)k
Output: c ∈ {false, true} indicating whether the convergence is

reached, (µ′i )i=1..k) ∈ (R|A|)k such that ∀i = 1..k, µ′i =

∑
o∈Ci

o

|Ci |
c ← true
for i = 1→ k do

µ′i ←
∑

o∈Ci
o

|Ci |
if µ′i 6= µi then
c ← false

end if
end for
return(c , (µ′i )i=1..k)
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k-means

Complexity of k-means

Question

Assuming the computation of a similarity is linear in the num-
ber of attributes |A|, what is the complexity of assign cluster?
O(k|O × A|).

Question

What is the complexity of update centers?

O(|O × A|).

Question

What is the complexity of k-means if t ∈ N iterations are nec-
essary to converge?

O(tk|O × A|).
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k-means

Convergence

Worst-case scenarios require 2Ω(|O|) iterations to converge but a
smoothed analysis gives a polynomial complexity.

The low complexity of k-means is its greatest advantage.
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k-means

Limitations of k-means

Convergence towards a local maximum of the sum, over all objects,
of the similarities to the centers of the assigned clusters;

Sensitivity to outliers (k-medoids replaces the means by medians);

Tendency to produce equi-sized clusters;

The number of clusters must be known beforehand.
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k-means

The elbow method

Plot a measure of the quality of the k clusters (e. g., the sum, over
all objects, of the similarities to the centers of the assigned
clusters) when k increases. Choose k after a large drop of the
growth.

More principled method exist and can be seen as variants (finding
the best trade-off between quality and compression).

If the quadratic time complexity of a hierarchical agglomeration is
not prohibitive, the number of clusters can be determined from the
dendrogram.
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k-means
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k-means

Tendency to produce equi-sized clusters
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EM
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EM

EM assumptions

The dataset D is seen as a random sample from a |A|-dimensional
random variable O.

This probability density function is given as a mixture model of the
k ∈ N \ {0} clusters (Ci )i=1..k :

f (o) =
k∑

i=1

fi (o)P(Ci )

, where P(Ci ) is the probability to belong to the cluster Ci and fi is
the probability density function of this cluster whose type of
distribution is chosen beforehand.
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EM

Maximum likelihood estimation

EM searches a parametrization θ of f (i. e., (P(Ci )i=1..k and the
parametrization of the (fi )i=1..k) so that the likelihood that D is
indeed a random sample of O is maximized:

arg max
θ

P(D|θ) .

Since the dataset is assumed to be a random sample from O (i. e.,
independent and identically distributed as O), the objective
becomes the computation of:

arg max
θ

∏
o∈O

f (o) .

It usually is hard to analytically compute arg maxθ
∏

o∈O f (o).
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EM

EM principles

EM is a greedy iterative approach that always converges to a local
maximum of P(D|θ).

An iteration consists in two steps:

E Given θ, the posterior probabilities of each object to
belong to each cluster is computed;

M θ is updated to reflect these probabilities.

Initially, the parametrization of θ is randomly drawn and
∀i = 1..k,P(Ci ) = 1

k . The procedure stops when, from an iteration
to the next one, the parametrization has not changed much (or at
all).
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EM

Expectation step

Given θ, the posterior probability of an object o ∈ O to belong to
a cluster Ci is:

P(Ci |o) =
P(Ci ∧ o)

P(o)

=
P(o|Ci )P(Ci )∑
a=1..k P(o ∧ Ca)

=
P(o|Ci )P(Ci )∑

a=1..k P(o|Ca)P(Ca)

=
fi (o)P(Ci )∑

a=1..k fa(o)P(Ca)
.
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EM

Maximization step (1/2)

The distribution of a cluster usually is assumed multivariate
normal, thus parametrized with a location (the center of the
cluster) and a covariance matrix.

Given (P(Ci |o))i=1..k,o∈O, the location of the cluster Ci is updated
to the weighted sample mean µi :∑

o∈O P(Ci |o)o∑
o∈O P(Ci |o)

.
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EM

Maximization step (2/2)

Given (P(Ci |o))i=1..k,o∈O, the covariance of the cluster Ci between
the random variables Oa and Ob is updated to the weighted
sample covariance:∑

o∈O P(Ci |o)(oa − µi ,a)(ob − µi ,b)∑
o∈O P(Ci |o)

.

Given (P(Ci |o))i=1..k,o∈O, the prior probability of belonging to the
cluster Ci is updated to: ∑

o∈O P(Ci |o)

|O|
.
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EM

EM with |A| = 1 and k = 2: illustration

EM clustering of the objects in a one-dimensional space using the
Euclidean distance.

Dataset:
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EM clustering of the objects in a one-dimensional space using the
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EM

EM with |A| = 1 and k = 2: illustration

EM clustering of the objects in a one-dimensional space using the
Euclidean distance.

Iteration 5:
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EM

EM with |A| = 2 and k = 3

EM clustering of the objects in a two-dimensional space using the
Euclidean distance.

Dataset:
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EM with |A| = 2 and k = 3

EM clustering of the objects in a two-dimensional space using the
Euclidean distance.

Iteration 1:
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EM

EM with |A| = 2 and k = 3

EM clustering of the objects in a two-dimensional space using the
Euclidean distance.

Iteration 36:
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EM

EM algorithm with mixture of Gaussians

Input: O,D, k ∈ N \ {0}
Output: a fuzzy clustering of O corresponding to posterior
probabilities of a locally maximized likelihood of a mixture of
Gaussians
(µi )i=1..k ← random(D)
(Σi )i=1..k ← (I , . . . , I )
(P(Ci ))i=1..k ← ( 1

k , . . . ,
1
k )

repeat
(P(Ci |o))i=1..k,o∈O ←
expectation(O,D, (µi )i=1..k , (Σi )i=1..k , (P(Ci ))i=1..k)
(c , (µi )i=1..k , (Σi )i=1..k , (P(Ci ))i=1..k)←
maximization(D, (P(Ci |o))i=1..k,o∈O, (µi )i=1..k)

until c
output((P(Ci |o))i=1..k,o∈O)
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EM

expectation

Input: O,D, (µi )i=1..k ∈ (R|A|)k , (Σi )i=1..k ∈
(R|A|×|A|+ )k , (P(Ci ))i=1..k ∈ [0, 1]k

Output: (P(Ci |o))i=1..k,o∈O the fuzzy assignment of the
objects in O to the clusters given by the mixture of Gaussians
parametrized with (µi )i=1..k , (Σi )i=1..k , (P(Ci ))i=1..k

for all o ∈ O do
for i = 1→ k do
P(Ci |o)← fi (o)P(Ci )∑k
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EM
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T Σ−1
i
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a (o−µa))

−1
2 P(Ca)
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EM

Complexity of expectation

Question

What is the complexity of computing (det(Σi ))i=1..k?

kO(|A|3).

Question

What is the complexity of computing (Σ−1
i )i=1..k once

(det(Σi ))i=1..k is known?

O(k |A|2).

Question

What is the complexity of computing one Mahalanobis distance,
(o, o ′) 7→ (o − o ′)TΣ−1

i (o − o ′), once Σ−1
i is known?

O(|A|2).

Question

What is the complexity of expectation?

O(k|A|2(|O|+ |A|)).
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EM

maximization

Input: D, (P(Ci |o))i=1..k,o∈O ∈ [0, 1]k|O|, (µi )i=1..k ∈ (R|A|)k
Output: c ∈ {false, true} indicating whether the convergence is
reached, the new parametrization of the mixture of Gaussians
c ← true
for i = 1→ k do
µ′i ←

∑
o∈O P(Ci |i)o∑
o∈O P(Ci |i)

if µ′i 6= µi then
c ← false

end if
Σ′i ←

∑
o∈O P(Ci |o)(o−µ′i )(o−µ′i )

T∑
o∈O P(Ci |o)

P(Ci )
′ ←

∑
o∈O P(Ci |o)

|O|
end for
return(c , (µ′i )i=1..k , (Σ′i )i=1..k , (P(Ci )

′)i=1..k)
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EM

Complexity of EM

Question

What is the complexity of expectation? O(k|A|2(|O|+ |A|)).

Question

What is the complexity of maximization?

O(k |O||A|2).

Question

What is the complexity of EM if t ∈ N iterations are necessary
to converge?

O(tk |A|2(|O|+ |A|).
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EM

Diagonal covariance matrix

A lower complexity is obtained by assuming all attributes
independent, i. e., all covariance matrices diagonal. The operations
involving such a matrix become linear in |A| and the total time
complexity of EM becomes O(tk |O × A|).

However, if the attributes are not really independent, the obtained
fuzzy clustering become much worse:

Full covariance matrices: Diagonal covariance matrices:
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EM

k-means as specialization of EM

k-means is EM with fi chosen as follows:{
1 if Ci = arg maxa=1..k s(o, µa)

0 otherwise
.
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Hierarchical Clustering

Outline

1 k-means

2 EM

3 Hierarchical Clustering

4 Density-based Clustering: DBSCAN

5 Conclusion
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Hierarchical Clustering

Hierarchical Clustering

Build a hierarchy of clusters (not an unique partition);

The number of clusters k is not required as input;

Use a distance matrix as clustering criteria

An early-termination condition can be used (ex. nb clusters).
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Hierarchical Clustering

Algorithm

Input: a sample of m objets x1, . . . , xm.

1 The algorithm begins with m clusters (1 cluster = 1 object);

2 Merge the 2 clusters that are the closest.

3 End If it remains only one cluster.

4 Go to step 2.
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Hierarchical Clustering

Output: a dendogram

A hierarchy that can be split at a given level to form a partition.

the hierarchy: a tree called dendogram

the leaves = the objects
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Hierarchical Clustering

Distance between clusters

Distance between the centers (centroid method)

Minimal distance among the pairs composed of objects from the
two clusters (Single Link Method):

d(i , j) = minx∈Ci ;y∈Cjd(x , y)

Maximal distance among the pairs composed of objects from the
two clusters (Complete Link Method):

d(i , j) = maxx∈Ci ;y∈Cjd(x , y)

Average distance among the pairs composed of objects from the
two clusters (Average Linkage Method):

d(i , j) = avgx∈Ci ;y∈Cjd(x , y)

42 / 52
Marc Plantevit Clustering

N



Pros:

Conceptually simple.

Theoretical properties
well-known.

Cons:

The clustering is definitive:
erroneous decisions are
impossible to modify later.

Non-extensible method for
large collections of objects
(θ(n2))
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Density-based Clustering: DBSCAN
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For this kind of problem, the use of similarity (or distance) measures
is less efficient than the use of neighborhood density
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Density-based Clustering: DBSCAN

Density-based clustering

Clusters are seen as dense regions separated by regions that are
much less denser (noise)

Two parameters:

Eps: The maximum radius of the neighborhood
MinPts: Minimum number of points within the Eps-neighborhood
of a point.

Neighborhood: VEps(p) = {q ∈ D | dist(p, q) ≤ Eps}

A point p is directly density-accessible from q w.r.t. Eps, MinPts if

P ∈ VEps(q) and |VEps(q)| ≥ MinPts
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Accessibility: p is accessible
from q w.r.t. Eps, MinPts if
there exists p1, . . . , pn such
that p1 = q, pn = p and pi+1 is
directly accessible from pi .

Connexity: p is connected to q
w.r.t. Eps and MinPts if there
exists a point o such that p
and q are accessible from o.
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Density-based Clustering: DBSCAN

DBSCAN: Density Based Spatial Clus-
tering of Applications with Noise

A cluster is the maximal set of connected points

Cluster shapes are not necessary convex
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Density-based Clustering: DBSCAN

DBSCAN Algorithm

Choose p

Retrieve all poinst that accessible from p (w.r.t. Eps and MinPts)

If p is a center, then a cluster is created.

If p is a limit, then there is not accessible point from p, Skip to
another point

Repeat until it remains no point.

49 / 52
Marc Plantevit Clustering

N



Conclusion

Outline

1 k-means

2 EM

3 Hierarchical Clustering

4 Density-based Clustering: DBSCAN

5 Conclusion

50 / 52
Marc Plantevit Clustering

N



Conclusion

Summary

k-means iteratively assigns each object to the cluster whose center
is the most similar and recompute these centers as the mean of the
objects they were assigned;

Its strongest advantage is its low complexity;

Its worst drawback is its tendency to discover equi-sized clusters;

k-means actually is a specialization of a whole class of algorithms
called EM;

They treat the dataset as a random sample of a multivariate
random variable whose pdf is given as a mixture model;

They locally maximize the likelihood, i. e., the probability of
observing the dataset given the parametrization of the mixture
model;

They iteratively compute the expectation of the likelihood and
update the parametrization so that this expectation is maximized.
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The end.
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