
EXPLAINABILITY IN 

GRAPH NEURAL 

NETWORKS
DBDM, ENSL, March 2021



Links

◦ Explainable IA: 

◦ https://sites.google.com/view/www20-explainable-ai-tutorial (WWW’2020 tutorial)

◦ https://xaitutorial2020.github.io/ (AAAI’2020 tutorial)

◦ GNN:

◦ https://web.stanford.edu/class/cs224w/slides/08-GNN.pdf

◦ https://github.com/snap-stanford/cs224w-notes/tree/master/machine-learning-with-

networks

◦ GNN and Explainability:

◦ Yuan, H., Yu, H., Gui, S., & Ji, S. (2020). Explainability in Graph Neural Networks: A 

Taxonomic Survey. arXiv preprint arXiv:2012.15445.

https://sites.google.com/view/www20-explainable-ai-tutorial
https://xaitutorial2020.github.io/
https://web.stanford.edu/class/cs224w/slides/08-GNN.pdf
https://github.com/snap-stanford/cs224w-notes/tree/master/machine-learning-with-networks


DNN: A revolution in ML & AI

◦ DNN have achieved promising performance in many research task:

◦ Computer vision

◦ S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action recognition,” IEEE 
transactions on pattern analysis and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.

◦ K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

◦ NLP

◦ J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pretraining of deep bidirectional transformers for 
language understanding,” in NAACL-HLT (1), 2019.

◦ A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is
all you need,” in Advances in Neural Information Processing Systems, 2017, pp. 59986008.

◦ Graph data analysis

◦ T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

◦ K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” in International 
Conference on Learning Representations, 2019. [Online]. Available: https://openreview. 
net/forum?id=ryGs6iA5Km



Development of DL methods for real-world 
applications in interdisciplinary domains

◦ Finance, Biology, Agriculture, Neuroscience, Astronomy, Defense, Sport analytics, 

Recommender systems, …

◦ Most deep models are developed without interpretability: Black boxes.

◦ Without reasoning the underlying mechanisms behind the predictions, deep models cannot

be fully trusted, which prevents their use in critical applications pertaining to fairness, 

privacy, and safety.

◦ To safely and trustfully deploy deep models, it is necessary to provide both accurate

predictions and human-intelligible explanations, especially for users in interdisciplinary

domains. 

◦ The need of developing explanation techniques to explain deep neural networks.



What is « Explainable AI»?

◦ Explainable AI explores and investigates methods to  produce or complement AI models to make accessible and 

interpretable the internal logic and the outcome of  the algorithms, making such process understandable by  

humans. 

◦ Explicability, understood as incorporating both intelligibility (“how does it work?” for non experts, e.g., patients or  

business customers, and for experts, e.g., product designers  or engineers) and accountability (“who is responsible

for”).

◦ 5 core principles for ethical AI: 

◦ beneficence, non maleficence, autonomy, and justice

◦ a new principle is needed in addition: explicability



MOTIVATING EXAMPLES



Business to Customer AI



CRITICAL 

SYSTEMS



Not only …

◦ Criminal Justice

◦ People wrongly denied

◦ Unfair Police dispatch

◦ Recidism prediction



COMPAS 
recidivism
black bias
◦ Compass has become

very unreliable. 

◦ only 20% of people 

considered at risk of 

recidivism ended up 

committing a new 

crime.

◦ Researchers at 

Dartmouth College

conducted an 

experiment that proved

that the predictions

Compas provided were

no better than those

made by people with no 

legal training.



Finance: credit scoring, insurance 
quotes



Healthcare

◦ Applying ML methods in medical care is problematic

◦ AI as 3rd party actor in Physician/Patient relationship

◦ Responsibility, Confidentiality ?

◦ Learning must be done with available data

◦ Can not randomize care given to patients !

◦ Must validate models before use.

Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare. 2020;295-336. 
doi:10.1016/B978-0-12-818438-7.00012-5

Pesapane, F., Volonté, C., Codari, M. et al. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United 
States. Insights Imaging 9, 745–753 (2018).

Keskinbora, K. H. (2019). Medical ethics considerations on artificial intelligence. Journal of Clinical Neuroscience, 64, 277-282.







EXPLANATION - FROM A MODEL 

PERSPECTIVE



Why Explainability: Debug (Mis-)Predictions





Why Explainability: Improve ML 
Model



Why Explainability: Verify the ML Model / System



Why Explainability: Learn New Insights



Why Explainability: Learn Insights in the Sciences



EXPLANATION - FROM A REGULATORY 

PERSPECTIVE



Why Explainability: Laws against Discrimination



FAIRNESS

TRANSPARENCY
PRIVACY

EXPLAINABILITY



GDPR concerns about lack of explainability in AI





Why Explainability: Growing Global AI Regulation

◦ GDPR: Article 22 empowers individuals with the right to demand an explanation of how an automated system 

made a decision that affects them.

◦ Algorithmic Accountability Act 2019: Requires companies to provide an assessment of the risks posed by the 

automated decision system to the privacy or security and the risks that contribute to inaccurate, unfair, 

biased, or discriminatory decisions impacting consumers

◦ California Consumer Privacy Act: Requires companies to rethink their approach to capturing, storing, and 

sharing personal data to align with the new requirements by January 1, 2020.

◦ Washington Bill 1655: Establishes guidelines for the use of automated decision systems to protect 

consumers, improve transparency, and create more market predictability.

◦ Massachusetts Bill H.2701: Establishes a commission on automated decision-making, transparency, fairness, 

and individual rights.

◦ Illinois House Bill 3415: States predictive data analytics determining creditworthiness or hiring decisions may 

not include information that correlates with the applicant race or zip code.



“Explainability by Design” for AI products



EXPLANATION - IN A NUTSHELL



What is Explainable AI?



Example of an End-to-End XAI System



How to Explain? Accuracy vs. Explainability



EXPLANATION AND GNN



Many explanation techniques for 
images and text

◦ Input-dependent explanations:

◦ Studying the important score for input features

◦ Studying the gradient or weights to analyse the sensitivity between input features and the 
predictions

◦ Occlusion of input features

◦ Input independent explanations:

◦ Studying the input patterns that maximize the predicted score of a certain class.

M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learning,” Communications of the ACM, vol. 63, no. 1, pp. 68–
77, 2019.

C. Molnar, Interpretable Machine Learning, 2019, https:// christophm.github.io/interpretable-ml-book/.



Much less for graphs …

◦ GNNs have become increasingly popular since many real-world data are represented as graphs, such as social 

networks, chemical molecules, and financial data.

◦ Several graph-related tasks are widely studied :

◦ node classification

◦ graph classification

◦ link prediction

◦ Many advanced GNN operations are proposed to improve the performance:

◦ graph convolution,

◦ graph attention,

◦ graph pooling.

◦ However, compared with image and text domains, the explainability of graph models are less explored, which is 

critical for understanding deep graph neural networks



The challenges

Explaining deep graph models is an important but challenging task:

◦ Unlike images and texts, graphs are not grid-like data, which means there is no locality information

and each node has different numbers of neighbors.

◦ Graphs contain important topology information and are represented as feature matrices and 

adjacency matrices:

◦ To explain feature importance, we may directly extend the explanation methods for image data to graph data

◦ However, the adjacency matrices represent the topology information and only contain discrete values.

◦ Existing methods cannot be directly applied. 

◦ For example, input optimization methods are popular to explain the general behaviors of image classifiers. 

It treats the input as trainable variables and optimizes the input via back-propagation to obtain abstract 

images to explain the model. However, the discrete adjacency matrices cannot be optimized in the same 

manner. 

◦ In addition, several methods learn soft masks to capture important image regions. However, applying soft 

masks to the adjacency matrices will destroy the discreteness property.



The challenges (2)
◦ For images and texts, we study the importance of each pixel or word.

◦ It is more important to study the structural information for graph data:

◦ the nodes in graphs may be unlabeled and the labels of the whole graphs are determined by graph structures.

◦ Studying each node may be meaningless since those unlabeled nodes contain no semantic meaning.

◦ For graphs in biochemistry, neurobiology, ecology, and engineering, graph substructures are highly related to their 
functionalities.

◦ Ex: network motifs are the building blocks of many complex networks. 

◦ Then such structural information should not be ignored in the explanation tasks. 

◦ However, existing methods from image domains cannot provide explanations regarding the structures. 

◦ For node classification tasks:

◦ the prediction of each node is determined. by different message walks from its neighbors

◦ Investigating such message walks is meaningful but challenging. 

◦ None of the existing methods in the image domain can consider such walk information, which needs further explorations.

◦ graph data are less intuitive than images and texts. To understand deep models, domain knowledge for the datasets is 
necessary.

◦ it is challenging for humans to understand the meaning of graphs.

◦ In interdisciplinary areas such as chemistry and biology, there are many unsolved mysteries and the domain knowledge is 
still lacking.

◦ non-trivial to obtain human-understandable explanations for graph models.

◦ need of standard datasets and evaluation metrics for explanation tasks



Overview

◦ Explanation methods focus on different aspects of the graph models and 

provide different views to understand these models.

◦ They generally answer a few questions: 

◦ which input edges are more important?

◦ which input nodes are more important? 

◦ which node features are more important? 

◦ what graph patterns will maximize the prediction of a certain class? 



Taxonomy of methods
Based on what types of explanations are provided, different techniques are categorized into two main classes: 

instance-level methods and model-level methods.



INSTANCE LEVEL EXPLANATIONS



Gradients/Features-Based Methods
◦ Employing gradients or features to explain the deep models is the most straightforward solution, 

which is widely used in image and text tasks. 

◦ Key idea: use the gradients or hidden feature map values as the approximations of input importance. 

◦ Gradients-based methods compute the gradients of target prediction with respect to input features by back-
propagation. 

◦ Features-based methods map the hidden features to the input space via interpolation to measure 
importance scores. 

◦ Larger gradients or feature values indicate higher importance. 

◦ Methods: 

◦ SA, Guided BP, CAM and Grad-CAM.

◦ The key difference among these methods lies in the procedure of gradient backpropagation and how different 
hidden feature maps are combined.

◦ F. Baldassarre and H. Azizpour, “Explainability techniques for graph convolutional networks,” in International Conference on Machine 
Learning (ICML) Workshops, 2019 Workshop on Learning and Reasoning with Graph-Structured Representations, 2019.

◦ P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann, “Explainability methods for graph convolutional neural networks,” in 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 772–10 781.



Perturbation-Based Methods



Methods
◦ GNNExplainer learns soft masks for edges and node features to explain the 

predictions via mask optimization. The soft masks are randomly initialized and 

treated as trainable variables.

◦ PGExplainer learns approximated discrete masks for edges to explain the predictions. 

It trains a parameterized mask predictor to predict edge masks.

◦ GraphMask is a post-hoc method for explaining the edge importance in each GNN 

layer. Similar to the PGExplainer, it trains a classifier to predict whether an edge can 

be dropped without affecting the original predictions.

◦ Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating explanations for graph neural 

networks,” in Advances in neural information processing systems, 2019, pp. 92449255.

◦ D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang, “Parameterized explainer for graph neural 

network,” in Advances in neural information processing systems, 2020.

◦ M. S. Schlichtkrull, N. De Cao, and I. Titov, “Interpreting graph neural networks for nlp with differentiable edge 

masking,” arXiv preprint arXiv:2010.00577, 2020.



Surrogate Methods



Methods
◦ GraphLime extends the LIME algorithm to deep graph models and studies the importance of different 

node features for node classification tasks.

◦ Given a target node in the input graph, GraphLime considers its N-hop neighboring nodes and their 
predictions as its local dataset where a reasonable choice of N is the number of layers in the trained 
GNNs.

◦ Then a nonlinear surrogate model, Hilbert-Schmidt Independence Criterion (HSIC) Lasso [65], is 
employed to fit the local dataset. 

◦ HSIC Lasso is a kernel based feature selection algorithm. 

◦ Finally, based on the weights of different features in HSIC Lasso, it can select important features to 
explain the HSIC Lasso predictions. Those selected features are regarded as the explanations of the 
original GNN prediction. 

◦ GraphLime can only provide explanations for node features but ignore graph structures, such as 
nodes and edges, which are more important for graph data. 

◦ Other methods (e.g., PGM-Explainer) use different strategy to sample the neigborhood and different 
surrogate models.

Q. Huang, M. Yamada, Y. Tian, D. Singh, D. Yin, and Y. Chang, “Graphlime: Local interpretable model explanations for graph neural networks,” arXiv preprint arXiv:2001.06216, 
2020.

M. N. Vu and M. T. Thai, “Pgm-explainer: Probabilistic graphical model explanations for graph neural networks,” in Advances in neural information processing systems, 2020.



MODEL LEVEL EXPLANATIONS



Model level explanations
◦ Model-level methods aim at providing the general insights and high-level understanding to explain deep 

graph models.

◦ Study what input graph patterns can lead to a certain GNN behavior, such as maximizing a target prediction. 

◦ Input optimization  is a popular direction to obtain model-level explanations for image classifiers. 

◦ it cannot be directly applied to graph models due to the discrete graph topology information

◦ XGNN proposes to explain GNNs via graph generation 

◦ Trains a graph generator so that the generated graphs can maximize a target graph prediction. 

◦ Generated graphs are regarded as the explanations for the target prediction and are expected to contain 

discriminative graph patterns.

◦ The graph generation is formulated as a reinforcement learning problem

◦ For each step, the generator predicts how to add an edge to the current graph.

◦ Then the generated graphs are fed into the trained GNNs to obtain feedback to train the generator via policy gradient. 

◦ Several graph rules are incorporated to encourage the explanations to be both valid and human-intelligible. 

◦ H. Yuan, J. Tang, X. Hu, and S. Ji, “XGNN: Towards model-level explanations of graph neural networks,” ser. KDD ’20. New York, NY, USA: 

Association for Computing Machinery, 2020, p. 430–438. [Online]. Available: https://doi.org/10.1145/3394486.3403085



EVALUATION



What is a good explanation? 

◦Good explanations should faithfully explain the behaviors of GNN 

models

◦Evaluating the explanation results is non trivial due to the lack of 

ground truths. 

◦Need for :

◦ Datasets with ground truths

◦ Evaluation metrics



Synthetic datasets

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng 
Chen, and Xiang Zhang. Parameterized explainer for graph neural network. 

In NeurIPS 2020

Explanation evaluation seen as a classification pb: a 

good explanation must uncover the ground truth.

Þ Use of AUC, Precision, Recall, …

Concerns: 

• Too strong hypothesis (what we like to have but not 

what the model actually capture!)

• only contain simple relation, not enough for 

comprehensive evaluation



Real-world datasets
◦ Sentiment graph data: 

◦ From text sentiment analysis data (SST2, SST5, Twitter)  to a graph that each node represents a word while the 

edges reflect the relationships between different words.

◦ Easy to understand, yet not enough for comprehensive evaluation

◦ Molecule data:

◦ Molecular datasets are also widely used in explanation tasks, such as MUTAG, BBBP, and Tox21.

◦ Each graph in such datasets corresponds to a molecule where nodes represent atoms and edges are the 
chemical bonds. 

◦ The labels of molecular graphs are generally determined by the chemical functionalities or properties of the 

molecules.

◦ Employing such datasets for explanation tasks requires domain knowledge, such as what chemical groups are 

discriminative for their functionalities. 

◦ In MUTAG, different graphs are labeled based on their mutagenic effects on a bacterium. 

◦ Known that carbon rings and NO 2 chemical groups may lead to mutagenic effects. 

◦ Then we can study whether the explanations can identify such patterns for the corresponding class.

◦ Is the domain knowledge exhaustive ? No !



Metrics
The Fidelity metric studies the prediction change 

by removing important nodes/edges/node 

features

Fidelity^acc metric studies the change of 

prediction accuracy (i.e., the model prediction 

changes).

Fidelity^prop focuses on the predicted probability

Infidelity studies prediction change by keeping 

important input features and removing 

unimportant features. 

Important features should contain discriminative 

information so that they should lead to similar 

predictions as the original predictions even 

unimportant features are removed



Metrics

Good explanations should be sparse, which means they should capture the most important 

input features and ignore the irrelevant ones. 

The metric Sparsity measures such a property.

where |mi| denotes the number of important input features (nodes/edges/node features) identified in mi

and |Mi| means the total number of features in Gi.



END



Conclusion

◦ Importance of providing explanations 

◦ Taxonomy of methods

◦ Difficulty to assess good explanation

◦ Many challenges still opened

◦ GNN introspection 

◦ From a pattern mining perspective: define new pattern languages to “open the black 

box”

◦ …



Exam (DM part)

◦ Pattern mining: 

◦ Frequent pattern mining (Apriori)

◦ Be able to perform an extraction with Monotone/Antimonotone/Convertible constraints (with Depthfirst enumeration if 

relevant)

◦ Output space sampling  (possible but only in an open question without too many calculations)

◦ Clustering:

◦ Be able to perform a kmeans or hierarchical clustering

◦ Possibility to have open question: (some problem with some generalization of what we studied)

◦ E.g., sequence mining …

◦ In that case, every new concept will be defined. 

◦ Documents allowed iff allowed for DB part (To be checked).

◦ Good luck ! 


