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Context: understanding a (natural) phenomena
Olfaction

• Ability to perceive odors

• Complex phenomenon from molecule to perception

Challenges

• Established links between physicochemical properties and
olfactory qualities of molecules

• Difficulties to formulate/propose rules

Applications

• Fundamental neuroscience research

• Industry (agri-food industry, perfume industry, ...)

• Health (anosmia, ...)
U.J. Meierhenrich, J. Golebiowski, X. Fernandez, and D. Cabrol-Bass
The Molecular Basis of Olfactory Chemoreception.
In Angewandte Chemie International Edition, 2004.
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Olfaction

Buck L, Axel R.
A novel multigene family may encode odorant receptors: a molecular basis for odor recognition, Nobel Prize in
Physiology or Medecine in 2004,
In Cell, 1991;65: 175-87.
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Towards discriminant pattern mining

• How to characterize and describe
the relationships between the
molecular properties and
olfactory qualities?

Toy dataset
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• Can we build predictive models? To some extent only because
of inter/intra individual variability and with very specific
datasets (Atlas)

A. Keller et al.
Predicting human olfactory perception from chemical features of odor molecules,
In Science, 355(6327):820–826, 2017.

• What features? 1800 numerical attributes but several
representations are possibles (molecular graph, 2/3D, smiley...)

Encode the data and mining patterns that discriminates odors

• Discover hypotheses, features and build intelligible classifiers 3/79
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Mining patterns in labeled data

Definition (Dataset)

Let O ,A and C be respectively a set of objects, a set of attributes
and a target attribute (the class). The domain of an attribute a ∈ A
is Dom(a) where a is either nominal or numerical. Each object is
associated to a value from the domain Dom(C) of the target attribute
through class : O 7→ Dom(C). D (O ,A ,C, class) is a dataset.

ID a b c C
1 150.19 21 11 l1
2 128.24 29 9 l2
3 136.16 24 10 l2
4 152.16 23 11 l3
5 151.28 27 12 l2
6 142.22 27 10 l1

• A dataset is a set of tuples called
entry, object, transaction...

• A tuple is described by attributes
(numerical, boolean, nominal,
graphs, etc.)
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What are we seeking?
Intuitive definitions

• Find descriptions, generalizations, that rather cover objects of a
single class label

• Find rules describing subsets of the population that are
sufficiently large and statistically unusual.

• Find descriptions which induce an exceptional model compared
to the whole dataset

ID a b c C
1 150.19 21 11 l1
2 128.24 29 9 l2
3 136.16 24 10 l2
4 152.16 23 11 l3
5 151.28 27 12 l2
6 142.22 27 10 l1

• The label distribution is known

• Can we find subgroups, sufficiently
large, for which the distribution is
different? 8/79



A simple example

Consider a dataset concerning people, and let the target attribute be
whether the person develops lung cancer. Interesting subsets would
then include the group of smokers, with an increased incidence of
lung cancer, and the group of athletes, with a decreased incidence of
lung cancer.

–Duivesteijn et al. 2016.
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Subgroup Discovery

Definition (Subgroup)

The description of a subgroup is given by d = 〈f1, . . . , f|A |〉 where
each fi is a restriction on the value domain of the attribute ai ∈ A .
A restriction is either a subset of a nominal attribute domain, or an
interval contained in the domain of a numerical attribute. The
description d covers a set of objects called the support of the
subgroup, denoted supp(d) ⊆ O .

ID a b c C
1 150.19 21 11 l1
2 128.24 29 9 l2
3 136.16 24 10 l2
4 152.16 23 11 l3
5 151.28 27 12 l2
6 142.22 27 10 l1

• How many subsets of objects?

• How many descriptions?

• How many subgroups?

• hint: Galois connection
11/79



How to evaluate the quality of a subgroup?

• The ability of a subgroup to discriminate a class label is
evaluated thanks to a quality measure

• The latter reflects the difference between the model induced by
the subgroup on the target attribute and the model induced by
the entire dataset

• A basic way, comparing label distribution: the model induced by
a set of objects S is the proportion of objects of S associated to
one class label l ∈ Dom(C)
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Weighted relative accuracy

• Consider d = 〈[128.24 ≤ a ≤ 151.28] , [23 ≤ b ≤ 29]〉
• We have supp(d) = {2, 3, 5,6}
• Accuracy for a label l2 is: acc(d, l2) =

|{o∈supp(d)|class(o)=l2}|
|supp(d)| = 3

4

• For the whole data we have |{o∈O |class(o)=l2}||O | = 1
2

• The relative accuracy is given by pl2d − pl20
• RAcc may high for very small subgroups: a weight give more

importance to frequent subgroups:
WRAcc(d, l2) =

|supp(d)|
|O | × (p

l2
d − pl20) =

1
6 .

ID a b c C
1 150.19 21 11 l1
2 128.24 29 9 l2
3 136.16 24 10 l2
4 152.16 23 11 l3
5 151.28 27 12 l2
6 142.22 27 10 l1

The accuracy pl2d should be taken relative
to the accuracy obtained by always guess-
ing the class, pl20 , weighted by the sub-
group coverage |supp(d)||O | .
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Exceptional Model Mining

• A generalisation of SD: rather than one single target variable
consider a more complex target concept, a numerical target,
several targets possibly structured (as a tree, a graph, ...)

• Any model can be built from a subset of objects, e.g.,
classification, regression and clustering models

• For a chosen model, there are several ways to measure the
difference between its instanciation on the the subgroup and
dataset, e.g. difference between two dendograms (trees), two
classification models, ...

Dataset

Models

Measure 
value

W. Duivesteijn, A. Feelders, and A. J. Knobbe.
Exceptional model mining - supervised
descriptive local pattern mining with complex
target concepts.,
In Data Min. Knowl. Discov., 30(1):47–98, 2016.
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Projections induce different models

• Consider that points have
attributes x, y and a Boolean
attribute diag which has a high
probability to take true for points
close to the diagonal

• In reality attribute/value
combination must be discovered
and are not trivial: Such patterns
are also useful to propose
hypotheses on the models (each
point has plenty of other attributes)
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Exceptional model mining

• The (linear) correlation model with two numerical targets y1, y2
φ(s) = supp(s) × (correlations(y1, y2) − correlationD (y1, y2))
with a Pearson coeff. The factor here again prevents over-fitting.

• The association model with two nominal targets

• The simple linear regression model

• The classification model

• The Bayesian network model
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Exceptional model mining

• The multi-class distribution model with WKL

WKL(d, L) =
|supp(d)|

|O |

∑︁
l∈L
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Exceptional model mining

• Considering target subspaces

Dataset

Models

Measure 
values

• ...
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Other formalism

• Learning from positive and negative examples, find hypothesis h
with formal concept analysis:

– h� ∩ E− = ;
– ∃A ⊆ E+ : A� = h

Sergei O. Kuznetsov.
Galois Connections in Data Analysis: Contributions from the Soviet Era and Modern Russian Research.

In Formal Concept Analysis , 2005: 196-225.

• Redescription mining, given attribute sets X and Y, find X1 ⊆ X
and Y1 ⊆ Y such that jaccard(X1, Y1) =

X1∩Y1
X1∪Y1

highest as possible
Esther Galbrun, Pauli Miettinen.
From black and white to full color: extending redescription mining outside the Boolean world.
In Statistical Analysis and Data Mining, 5(4): 284-303 (2012).
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Problems

• Choosing the right model and the appropriate measure

• Representing the information with complex languages
• Mining efficiently the search search space

– top-k-patterns are highly redundant
– either exhaustively with smart pruning or with heuristics
– Returning a diverse collection of non redundant patterns

requires to pay attention to an exploration/exploitation trade-off

• Choosing the right patterns to build predictive models: patterns
can be used as features making intelligible classifications
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The search space
Most of the SD/EMM algorithms exploit the lattice of subgroups

Definition (Subgroup search space)

• The set of all descriptions is partially ordered and is structured
as a lattice. (Question: can we use closed subgroups?)

• s1 ≺ s2 and say that the subgroup s1 is more specific than the
subgroup s2 if the description of s1 is more specific than the one
of s2 w.r.t. the partial order (s2 is more general than s1).

Example

〈[23 ≤ b ≤ 29]〉 is more general than
〈[128.24 ≤ a ≤ 151.28] , [23 ≤ b ≤ 29]〉

Goal: Find the top-k patterns maximizing a quality measure φ 25/79



The need of heuristic search

Exhaustive search works in practice when

• For simple pattern languages

• Quality measures that allows pruning/upper bounds

• Search space of reasonable size

With numerical attributes, this is even more problematic

• Convex: no pattern with empty support!

• Discretization are (almost) always used but it comes with loss of
information, which may not be acceptable when dealing with, e.g.
spatial attributes describing molecules

• Discretization is always a difficult choice and impacts interpretation

Heuristic search becomes mandatory
26/79



The redundancy problem

• The quality measure of a subgroup
close to a local optimum s∗ in the
lattice is similar to – but lower than –
the quality measure of s∗: The slight
change in the description of a
subgroup s close to s∗ induces a
slight change of the support of s
compared to those of s∗.

• It is desirable to avoid extracting the
redundant subgroups close to a local
optimum: This is the redundancy
problem.

Redundant subgroups
w.r.t. the local optima

Lattice

Local Optima

Minimum support 
threshold

Subgroups
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The completeness problem

• What are the guarantees of finding
the top-k patterns maximizing a
quality measure φ?

• A greedy approach will certainly
miss some of them

• Many techniques

– hill climbing from the top
– hill climbing with random

seeds with restarts
– beam search
– genetic algorithms
– Diversity: all optima should be

present in the pattern set
result.

Beam

Lattice

Local Optima

Minimum support 
threshold

Subgroups
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The diversity problem
• What are the guarantees of finding

the top-k patters maximizing the
quality measures φ?

• A greedy approach will certainly
miss some of them,

• Many techniques

– sampling (see Pattern Mining:
Part 2): based on a probability
distribution over the subgroup
space that gives more chance
to an interesting subgroup to
be drawn.

• Diversity: all optima should be
present in the pattern set result.

Lattice

Local Optima

Minimum support 
threshold

Subgroups
Randomly 

sampled area
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The diversity problem

• What are the guarantees of finding
the top-k patterns maximizing the
quality measure φ?

• A greedy approach will certainly
miss some of them,

• Many techniques

– Monte Carlo Tree Search: use a
lot of random searches with
"memory" no a priori required

• Diversity: all optima should be
present in the pattern set result.

Built tree

Lattice

Local Optima

Minimum support 
threshold

Subgroups
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The DSSD Problem

Problem (Diverse Subgroup Set Discovery)

Given D (O ,A ,C, class), a quality measure φ, a minimum support
threshold minSupp, an integer k, extract a set of the top-k best
patterns w.r.t. φ that has as little redundancy as possible and the
highest number of local optima.

Matthijs van Leeuwen, Arno J. Knobbe:
Diverse subgroup set discovery.
Data Min. Knowl. Discov., 25(2): 208-242 (2012)
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Exhaustive search

• Search space of subgroups: lattice of all possible descriptions
(D,v) where d1 v d2 means that subgroup d1 is more general
than d2, or equivalently supp(d2) ⊆ supp(d1).

• This lattice can be explored either in a depth-first (DFS) or in a
breadth-first (BFS) search manner.

• During the traversal, the quality measure is computed for each
subgroup.

• In the end, a redundancy filter is applied to output the top-k
diverse subgroups. (discussed later)
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Exhaustive search

• Mining closed patterns when the quality measure is maximized
by them: adapt CloseByOne

– Define u and@
– Define the operation the gives the next more general patterns

after a pattern (the neighboors) and a lexicographic order on
them.

– That’s it!

• Safe pruning: see the SD-Map* algorithm
– monotone constraints
– upper bounds

34/79
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Beam search

• Level wise exploration with fixed size width

• Can be understood as a set of parallel hill climbing search
(ensures fast termination)

The subgroup search space is explored level-wise (BFS) and each
level is restricted to a set of diversified high quality patterns. The
diversification is done as follows. Subgroups are sorted according to
their quality: The best is picked and all the next patterns that are too
similar (bounded Jaccard coefficient between their support) are
removed. The first of the next patterns that is not similar is kept, and
the process is reiterated.
Used in most of the research papers and platforms!
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Beam search

Consider a single binary target.

• Starts from the most general subgroup

• Generates next levels by specializing subgroups by restricting an
attribute as long as the quality measure is improved

• Choose among those only a constant number of candidates to
continue the exploration (the beam width: The beamWidth best
subgroups w.r.t. the quality measure).

• How many possible actions? n for itemsets, 2n for n numerical
attributes, ... what about sequence and graphs?
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A Beam search pseudo code
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In presence of multi label data
• Binary relevance widely used
• Label powerset to keep label correlations but too numerous!
• Jointly explore subgroups and label subset: search for bi-sets

G Bosc, J Golebiowski, M Bensafi, C Robardet, M Plantevit, J-F Boulicaut, M Kaytoue:
Local Subgroup Discovery for Eliciting and Understanding New Structure-Odor Relationships.
Discovery Science, 2016: 19-34
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Monte Carlo Tree Search (MCTS)
MCTS is an exploration method, initially designed for Artificial
Intelligence, that builds iteratively the search tree according to
random simulations. The strengths of MCTS are :

• The power of random simulations

• The trade-off between exploration and exploitation of an
interesting solution

Select Expand Roll Out Update

C. Browne, E. J. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. P. Liebana, S.
Samothrakis, and S. Colton
A survey of monte carlo tree search methods.
In IEEE Trans. Comput. Intellig. and AI in Games, 2012.
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Introductory example
N = 0 / Q = 0
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Introductory example
N = 5 / Q = 3

N = 1 / Q = 0 N = 1 / Q = 1 N = 2 / Q = 2 N = 1 / Q = 0

N = 1 / Q = 1

Δ =1
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Monte Carlo Tree Search
• Making optimal decisions in artificial intelligence (AI) problems,

typically move planning in combinatorial games
• Min-Max cannot work when there is no good heuristic function
• Multi armed bandit problem: pull one arm at each turn in order

to find the best arm, minimize regret, maximize expected return
• MCTS combines the generality of random simulation with the

precision of tree search

Exploration/exploitation trade-
off: e.g. shall I try another
restaurant or stick to those I
know excellent?
MCYS: Key advance enabling a
program to win against a pro
Go player! ALPHA GO (Nature,
2016)
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Monte Carlo Tree Search
Games
• Find the best action to play given a current game state
• Build a partial game tree depending on results of previous

iterations until max. budget is reached, 4 steps per iter.
– Selection of a node (depending on the exploration/exploitation

trade-off due to the past iterations)
– Creation of a new node from the selection one
– Simulation: sequence of actions to a terminal node
– Update/Backpropagation: Any node s is provided with two

values: The number N(s) of times it has been visited, and a
value Q(s) that corresponds to the aggregation of rewards of all
simulations passed through s so far (mean).

• The aggregated reward of each node is updated through the
iterations and becomes more and more accurate.

• When computation budget reached: return the optimal move
that leads to the child of the root node with best Q(.).

Select Expand Roll-out Update

44/79



Monte Carlo Tree Search
• Recursively selects from the root an action until either a

terminal (win/loss/draw) or fully-expanded (no actions) node.
• Selection base on the exploration/exploitation trade-off given

by the an Upper Confidence Bound (UCB) which estimate the
regret of choosing a non-optimal child.

• Many variants of UCB, e.g. UCT and one of its variant, namely
the UCT: UCT(s, s′) = Q(s′) + 2Cp

√︁
2 lnN(s)
N(s′) where s′ is a child

of a node s and Cp > 0 is a constant.
• First term: exploitation; second term: exploration

Select Expand Roll-out Update
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Monte Carlo Tree Search

Expand A new child, denoted sexp, of the selected node ssel is added
to the tree according to the available actions. The child sexp is
randomly picked among all available children of ssel not yet
expanded in the search tree.

Select Expand Roll-out Update
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Monte Carlo Tree Search

RollOut From this expanded node sexp, a simulation is played based
on a specific policy. This simulation consists of exploring the search
space (playing a series of actions) from sexp until a terminal state is
reached. It returns the reward Δ of this terminal state: Δ = 1 if the
terminal state is a win, Δ = 0 otherwise.

Select Expand Roll-out Update

47/79



Monte Carlo Tree Search

Update The reward Δ is back-propagated to the root, updating for
each parent the number of visits N(.) (incremented by 1) and the
aggregation reward Q(.) (the new win rate).

Select Expand Roll-out Update

48/79



Monte Carlo Tree Search

Next Select will select the most urgent node to be expanded
according to the UCT that will consider new values of N(.) and Q(.)
recently back-propagated.

Select Expand Roll-out Update
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Monte Carlo Tree Search

Example of tree during a search
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General idea

Problem (EMM when descriptions are itemsets)

Let I be a set of items. A transaction is a subset of items t ⊆ I . A
transaction database is a set of transactions T = {t1, ..., tn}. An
itemset is an arbitrary subset of items P ⊆ I . Its support is given by
supp(P) = {t ∈ T |P ⊆ t}. Its evaluation measure φ(P) depends on
the EMM instance that is considered. The problem is to find the best
itemsets w.r.t φ.

It follows that the search space is given by S = (2I ,⊆). The initial
pattern is the empty set: s0 = ;. The actions that lead to
specializations, or supersets, are the items I . A simulation is a
random sequence of items additions.

52/79



EMM as a single-turn single-player game

Let S be the set of all possible patterns ordered with a
specialization/generalization rel. , a poset (S ,≺), generally a lattice.

• Let S be the set of game states, or patterns, with support
supp(s) and quality measure φ(s). The initial game state
s0 ∈ S , root of tree, is the most general pattern.

• The actions for generating new game states are defined as
pattern restrictions (for deriving pattern refinements).

• A simulation is a random sequence of actions, or pattern
restrictions. A leaf is a maximal frequent pattern.

The goal is not to decide, at each turn, what is the best action to play,
but to explore the search space of patterns with the benefit of the
exploitation/exploration trade-off and the memory of the tree.
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MCTS for EMM: Select
Goal: select the most urgent node w.r.t. exploration vs. exploitation.
• Any UCB, but empirically, the best is the Single-Player MCTS

adds a third term to the UCB to take into account the variance
σ2 of the rewards obtained by the child so far. SP-MCTS of a
child s′ of a node s is:
SP-MCTS(s, s′) = Q(s′) + C

√︁
2 lnN(s)
N(s′) +

√︁
σ2(s′) + D

N(s′)
where the constant C = 0.5 is used to weight the exploration
term and the term D

N(s′) inflates the standard deviation for
infrequently visited children (D is a constant).

• The reward of a node rarely visited is considered as less certain:
It is still required to explore it to get a more precise σ estimate

• If the variance is still high, it means that the subspace from this
node is not homogeneous: more exploration is needed.

• Pattern evaluation measures φ can be normalized (UCT). 54/79



MCTS for EMM: expand

The simple way to expand the selected node ssel is to choose
uniformly an item not yet used in ssel, that is to specialize ssel into
sexp such that sexp ≺ ssel: sexp is a refinement of ssel.
but... a lot of redundant nodes!

1. a pattern s can be expanded into a node s′ with the same
support, thus, the same quality measure (for most of the quality
measures)

2. a pattern smay appear in different branches of the
enumeration tree.
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MCTS for EMM: expand with generators

Definition (Closed descriptions and their generators)

The equivalence class of an pattern s is given by
[s] = {s′|supp(s) = supp(s′)}. Each equivalence class has a
unique smallest element w.r.t. ≺ that is called the closed pattern: s is
said to be closed iff 6 ∃s′ such that s′ ≺ s and supp(s) = supp(s′).
The (minimal) non-closed patterns are called (minimal) generators.

Avoiding duplicates in a tree branch. A specialization is uniformly
picked: If its support does change from the parent, it is used as an
expansion. Otherwise, the specialization is considered invalid and
another one is picked. Repeat this process until a valid expansion is
found. If there are no more valid specializations, then label node as
fully expanded and start a new iteration. 56/79



Removing duplicates and correcting bias

A pattern can be generated in nodes in different branches of the
Monte Carlo tree, as the search space is a lattice: For example, with
I = {a, b, c}, all permutations of the sequence 〈a, b, c〉 could be
generated.
Thus, a part of the search space is sampled several times in different
branches of the tree. However, the visit count N(s) of a node s will
not count visits of other nodes that depict exactly the same pattern:
The UCB is biased!
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Removing duplicates and correcting bias

Solutions for Avoiding duplicates in the search tree.

• Lectic order: Setting an enumeration technique that generates
each pattern once and only once is trivial in pattern mining
(setting a total order on the set of actions, e.g. lexicographic for
itemsets). This restricts the set of available actions at each node.
However, it biases the search as some actions are discarded.
The UCB should correct this bias.

• Permutation AMAF is a solution that allows to keep a unique
node for all duplicates of a pattern. This node no longer has a
single parent but a list of each duplicates’ parent. This list will
be used when back-propagating a reward. A hash-map is used
to store all the unique patterns encountered so far in the search
tree and pointers towards duplicates are set. 58/79



Removing duplicates and correcting bias

The problem with a lectic ordering: patterns on the left hand side of
the tree have less chances to be generated, e.g., prob({a, b}) = 1/6
while prob({b, c}) = 1/3.

a b c
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a b c
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Removing duplicates and correcting bias
The DFS-UCT of a child sj of s

DFS-UCT(s) = Q(s) + 2Cp

√︃
2 · ln[N(s) · ρnorm(s)]

N(sj) · ρnorm(sj)

with

ρnorm(s) =
V

Vj
=

|{s′|s′ ≺ s ∈ S }|

|{s′|sl s′ ∧ s′ ≺ s ∈ S }|

• Weight the number of
visits of a node

• higher weight: smaller
proportion of the
specialization to explore
w.r.t. lectic orderl

The most
 general pattern

Legend:

V

Vj
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MCTS for EMM: roll-out

From the expanded node sexp a simulation is run (roll-out).

• With standard MCTS, a simulation is a random sequence of
actions that leads to a terminal node: A game state from which
a reward can be computed.

• But: any pattern encountered during the simulation could be
evaluated

• Define the notion of path (the simulation) and reward
computation (which nodes are evaluated and how these
different rewards are aggregated) separately.
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MCTS for EMM: roll-out

Definition (Path Policy)

Let s1 the node from which a simulation has to be run (i.e., s1 = sexp).
Let n ≥ 1 ∈ N, we define a path p(s1, sn) = {s1, . . . , sn} as an
ordered list of patterns starting from s1 and ending with sn such that:
∀i ∈ {1, . . . , n− 1}, si+1 is a direct refined pattern of si. We denote
P (s1, sn) the set of all possible paths from s1 to sn.

• naive-roll-out: A path length n is randomly picked in (1, ...,
pathLength) where pathLength is given by the user (pathLength
= |I | by default) using the direct refinement operator. Fast
but fail at finding frequent patterns (or simply with non
empty support!)
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MCTS for EMM: roll-out

Definition (Path Policy)

Let s1 the node from which a simulation has to be run (i.e., s1 = sexp).
Let n ≥ 1 ∈ N, we define a path p(s1, sn) = {s1, . . . , sn} as an
ordered list of patterns starting from s1 and ending with sn such that:
∀i ∈ {1, . . . , n− 1}, si+1 is a direct refined pattern of si. We denote
P (s1, sn) the set of all possible paths from s1 to sn.

• direct-freq-roll-out: The path is extended with a randomly
chosen restriction until it meets an infrequent pattern sn+1
using the direct refinement operator. sn is a leaf of the tree in
our settings. Slower, but ensures frequent patterns
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MCTS for EMM: roll-out

Definition (Path Policy)

Let s1 the node from which a simulation has to be run (i.e., s1 = sexp).
Let n ≥ 1 ∈ N, we define a path p(s1, sn) = {s1, . . . , sn} as an
ordered list of patterns starting from s1 and ending with sn such that:
∀i ∈ {1, . . . , n− 1}, si+1 is a direct refined pattern of si. We denote
P (s1, sn) the set of all possible paths from s1 to sn.

• large-freq-roll-out overrides the direct-freq-roll-out by using
non direct specializations: Several actions are added instead of
one to create a new element of the path. The number of added
actions is randomly picked in (1, ..., jumpLength) (user given).
Quite fast and allows to go deeper in the search space; good
trade-off especially for numeric with large domains
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MCTS for EMM: roll-out
Definition (Reward Aggregation Policy)

Let s1 the node from which a simulation has been run and p(s1, sn)
the associated random path. Let E ⊆ p(s1, sn) be the subset of
nodes to be evaluated. The aggregated reward of the simulation is
given by: Δ = aggr({φ(q)∀q ∈ E}) ∈ [0; 1]

• terminal-reward: E = {sn} and aggr is the identity function.

• random-reward: E = {si} with a random 1 ≤ i ≤ n and aggr
the identity function.

• max-reward: E = p(s1, sn) and aggr is themax(.) function

• mean-reward: E = p(s1, sn) and aggr is themean(.) function.

• top-k-mean-reward: E = top-k(p(s1, sn)), aggr is themean(.)
function and top-k(X) returns the k elements with the highest φ.

For some path policies, node supports are computed, “free” φ
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MCTS for EMM: roll-out

A basic MCTS forgets any state encountered during a simulation. A
pattern with a high φ should not be forgotten as we might not
expand the tree enough to reach it. Add a memory policy!

Definition (Roll-out Memory Policy)

A roll-out memory policy specifies which of the nodes of the path
p = (s1, sn) shall be kept in an auxiliary data structureM.

• no-memory: Any pattern in E is forgotten The best pattern
may be forgotten!

• all-memory: All evaluated patterns in E are kept Too costly

• top-k-memory: A listM stores the best k patterns in E w.r.t. φ(.)
trade-off
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MCTS for EMM: update
A back-propagation policy updates the tree according to a simulation.
Let ssel be the selected node and sexp its expansion from which the
simulation is run: The policy updates the estimation Q(.) and the
number of visits N(.) of each parent of sexp recursively. The number
of visits is always incremented by one but for Q(.):
• mean-update: Q(.) is the average of the rewards Δ

back-propagated through the node so far (basic MCTS).
• max-update: Q(.) is the maximum reward Δ back-propagated

through the node so far. This strategy allows to identify a local
optimum within a part of the search space that contains most
of uninteresting patterns.

• top-k-mean-update: Q(.) average of the k best rewards Δ
back-propagated through the node so far. It favors parts of the
search space containing several local optima. 67/79



MCTS for EMM: Budget exceeded!

Goal: Pick the k-best diverse and non-redundant subgroups within a
huge pool of nodes: the tree and the auxiliary memory.

• LetP = T ∪M be a pool of patterns, where T is the set of
patterns stored in the nodes of the tree.

• P is totally sorted w.r.t. φ in a list ι.

• Recursively, we poll (and remove) the best subgroup s∗ from ι,
and we add s∗ toR if it is not redundant with any subgroup in
R .

It requires however that the pool of patterns has a reasonable
cardinality which may be problematic with MCTS. The allowed
budget must enable such post-processing (e.g., one million of
iterations with 4GB RAM very high branching factors of about 600).
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Outline

2. Diverse Pattern Set Discovery
2.1 Problem settings
2.2 Exhaustive Search
2.3 Heuristic Search with Beam-search
2.4 Monte Carlo Tree Search
2.5 Pattern mining with MCTS
2.6 A few experiments
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Tuning the MCTS

After a very important number of experiments, it seems that the
best tuning is:

• single player UCB (SP-MCTS) for the select policy

• min-gen-expand policy with AMAF activated surprising!

• direct-freq-roll-out policy for the simulations but it depends...

• max-reward policy as aggregation function of the rewards of a
simulation but it depends...

• top-10memory policy but it depends...

• max-update policy for the back-propagation. but it depends...
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Finding patterns hidden in artificial data

Definition (Evaluation measure)

LetH be the set of hidden patterns, andF the set of patterns
found by an MCTS mining algorithm, the quality of the found
collection is given by:
qual(H ,F ) = avg∀h∈H (max∀f∈F (Jaccard(supp(h), supp(f)))),
that is, the average of the quality of each hidden pattern, which is
the best Jaccard coefficient with a found pattern. We thus measure
the diversity. This measure is pessimistic in the sense that it takes its
maximum value 1 if and only if all patterns are completely retrieved.
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Finding patterns hidden in artificial data

number of objects
nb_obj = 50,000
number of attributes
nb_attr = 25
domain size per attribute
domain_size = 50
number of hidden patterns
nb_patterns = 25
support of each hidden pattern
pattern_sup = 100
probability of a pattern labeled −
out_factor = 0.1
probability of a object to be noisy
noise_rate = 0.1
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Comparing other paradigms
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Comparing other paradigms
Redundancy and diversity: beam seach vs. MCTS
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Real life dataset: back to olfaction!

Neuroscientist colleagues gave us a dataset contains 1,689 molecules
described by 82 physico-chemical properties (e.g., the molecular
weight, the number of carbon atoms, etc.) and associated
Goal: Extract subgroups given by a description that are characteristic
of theMusk odor using φ as the F1-score.

• Best known exhaustive approach SD-Map: 477.8 seconds and
best quality measure of F1-Score = 0.45.

• MCTS: 1 million of iterations in 99 seconds (average over 5 runs)
with the best quality measure found is F1-Score = 0.47.

• SD-Map discretize numerical attributes with a greedy heuristic!

• 300 attributes: MCTS gives results, exhaustive search can’t.
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Conclusion on MCTS

• Heuristic search of supervised patterns becomes mandatory
with large datasets. Standard heuristics lead to a weak diversity
in pattern sets: Only few local optima are found.

• MCTS: An exploration strategy leading to “any-time" pattern
mining that can be adapted with different measures and
policies.

• The experiments show that MCTS provides a much better
diversity in the result set than existing heuristic approaches.
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Conclusion on MCTS

• Interesting subgroups are found in reasonable amount of
iterations and the quality of the result iteratively improves.

• MCTS is a powerful exploration strategy that can be applied to
several, if not all, pattern mining problems that need to
optimize a quality measure given a subset of objects.

• The main difficulties are to be able to deal with large branching
factors, and jointly deal with several quality measures and
interactions (remember your previous class on pattern mining
and preferences), that is, skylines, progressive widening, bandit
with infinite arms, streaming data, ... exciting research!
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3. Concluding remarks
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Concluding remarks

• Discriminant pattern mining with Exceptional Model Mining
– A pattern domain: FCA helps with patterns structures
– A model: You can think about anything!
– A measure: Compare distribution, trees, classification models, ...

• Computating discriminant patterns
– eliciting hypotheses from data
– Building classifiers
– Exhaustive approaches fail: heuristic required
– Redundancy, diversity, coverage are keys
– MCTS a novel a promising paradigm
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