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ABSTRACT
We present several exact and highly scalable local pattern
sampling algorithms. They can be used as an alternative
to exhaustive local pattern discovery methods (e.g, frequent
set mining or optimistic-estimator-based subgroup discov-
ery) and can substantially improve efficiency as well as con-
trollability of pattern discovery processes. While previous
sampling approaches mainly rely on the Markov chain Monte
Carlo method, our procedures are direct, i.e., non-process-
simulating, sampling algorithms. The advantages of these
direct methods are an almost optimal time complexity per
pattern as well as an exactly controlled distribution of the
produced patterns. Namely, the proposed algorithms can
sample (item-)sets according to frequency, area, squared fre-
quency, and a class discriminativity measure. We present ex-
perimental results demonstrating the usefulness of our pro-
cedures for pattern-based model construction as well as their
good scalability.

1. INTRODUCTION
This paper presents simple yet effective procedures for lo-
cal pattern discovery[19] that attack the task from a differ-
ent algorithmic angle than the standard search approach—
namely, by directly generating individual patterns as out-
come of a random experiment. Local patterns such as associ-
ation rules [1] or emerging patterns [12] are used in different
application contexts from exploratory data analysis where
they constitute units of discovered knowledge to predictive
model construction where patterns act as binary features
[9, 10, 13]. All applications have in common that usually
only a few patterns can be effectively utilized—either due
to the limited attention of a data analyst or because too
many features can reduce the comprehensibility and perfor-
mance of a global model. Standard local pattern discovery
algorithms, however, are based on exhaustive search within

huge pattern spaces (e.g., frequent set miners [18, 23], or
optimistic-estimator-based subgroup and association discov-
ery [16, 21]). Consequently, they tend to either produce a
vast amount of output patterns or at least enumerate them
implicitly.

This motivates the invention of algorithms that only sample
a representative set of patterns without explicitly searching
in the pattern space. There are such algorithms in the lit-
erature [2, 6, 8] but they provide either no control over the
distribution of their output or only asymptotic control by
simulating a stochastic process on the pattern space using
the Markov chain Monte Carlo method (MCMC). In addi-
tion to only offering approximate sampling, MCMC methods
have a scalability problem: the number of required process
simulation steps is often large and, even more critical, in-
dividual simulation steps typically involve support counting
and, hence, can be too expensive for large input datasets.
Therefore, we present novel pattern generation methods that
sample patterns exactly and directly, i.e., without simulating
time-consuming stochastic processes. More precisely, given
a dataset D and a number of desired patterns k, the proce-
dures

• produce exactly k patterns each of which is gener-
ated following exactly a distribution proportional to ei-
ther frequency, squared frequency, area (i.e., frequency
times size), or discriminativity (i.e., frequency in posi-
tive data portion times negative frequency in negative
data portion);

• use time O(‖D‖ + kn) respectively O(‖D‖2 + kn) in
case of squared frequency and discriminativity where
n denotes the number of items and ‖D‖ the size of the
dataset, i.e., the sum of all data record sizes1.

That is, after a linear respective quadratic preprocessing
phase each pattern is produced in a time linear in the num-
ber of items. This time complexity appears to be almost op-
timal, because only reading the data once requires O(‖D‖)
and just printing k patterns without any further computa-
tion requires time O(kn).

1This assumes that exp(n) > |D|; the actual complexities
are O(‖D‖+ k(n+ ln |D|)) and O(‖D‖2 + k(n+ ln2 |D|)).
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Figure 1: (a) Exhaustive search: involves complete generation of an enumeration space guaranteed to contain
all interesting patterns; however, size of that space usually has no reasonable bound with respect to input
size and is hard to predict. (b) Controlled pattern sampling : no explicit construction of potentially huge part
of pattern space; instead random generation of small designated number of patterns; no guarantee of finding
patterns satisfying hard interestingness threshold, but control over computation time and output size.

After giving some more background on the idea of con-
trolled repeated pattern sampling and reviewing other pat-
tern sampling algorithms, the remainder of this paper is
structured as follows. We define formal and notational back-
ground (Sec. 2) followed by a detailed description of the
sampling procedures (Sec 3). Then we report experimental
results showing that sampled patterns are equally useful for
pattern-based classification as frequent sets and that pattern
sampling can easily outperform exhaustive listing on large
datasets (Sec. 4). Finally, we give a summarizing discussion
of all results (Sec. 5).

1.1 Pattern Sampling
The data mining literature contains several local pattern dis-
covery algorithms that can efficiently produce large output
families. Here, efficiency is defined in an output-sensitive
way, i.e., amortized polynomial time per pattern, which is
a useful notion assuming that the produced pattern col-
lections are the final output. When viewed from a global
(application-driven) perspective though, the enumerated pat-
terns are usually only an intermediate result, from which
a final—often much smaller—pattern collection is selected.
Hence, enumeration is only the first half of a surrounding
local pattern discovery process. This two phase approach,
which we refer to as “exhaustive search” is illustrated in Fig-
ure 1(a): during the enumeration step a part of the implicitly
defined pattern space is physically constructed—we refer to
that part as “enumeration space”—and then, during the se-
lection step, the most valuable patterns from this enumera-
tion space are collected with respect to some interestingness
measure.

An example for this paradigm is listing frequent sets of an
input dataset, but subsequently using only those sets that
provide rules with a large lift (or interest) value. A further
example is optimistic-estimator-based pruning for subgroup
or association discovery. There the enumeration space is the
family of all sets having a large enough optimistic estimate of
their interestingness and the truly interesting patterns are
selected for the result family. Note that, in this example,
enumeration and selection are algorithmically interweaved,
i.e., sets are already selected throughout the enumeration

phase. Many more examples emerge from the LeGo ap-
proach to data mining [20] where patterns are selected ac-
cording to their utility for constructing global models.

For these approaches, the enumeration step can constitute
a severe bottleneck. Even if enumeration is performed by
an amortized polynomial time algorithm, its computation
time is essentially unpredictable: the size of the enumer-
ation space cannot be directly controlled and its explicit
construction takes time at least proportional to that size.
On the other hand, if one enforces a maximum computation
time by aborting the execution at a certain point, one ends
up with an uncontrolled subset of the enumeration space,
which depends on the internal search order of the enumera-
tion algorithm.

In contrast, suppose we can access the pattern space L by
an efficient sampling procedure simulating a distribution
π : L → [0, 1] that is defined with respect to some interesting-
ness measure q, e.g., π(·) = q(·)/Z where Z is a normalizing
constant. Then it is possible to efficiently generate a pattern
collection that consists exactly of as many patterns as are
truly required and that is representative for the distribution
π and hence for the underlying notion of interestingness q.
Figure 1(b) illustrates this alternative approach, which we
want to refer to as “controlled repeated pattern sampling”.
A potentially positive side-effect of this paradigm is that in-
stead of the usual hard constraints it utilizes parameter-free
soft constraints [5]. Hence, the user is freed of the often
troublesome task of finding appropriate hard threshold pa-
rameters such as a minimum frequency threshold.

1.2 Related Work
In contrast to sampling from the input database (see, e.g.,
[22, 25]), it is a relatively new development in local pattern
discovery to sample from the pattern space. In the context
of maximal frequent subgraph mining, Chaoji et al. [8] de-
scribes a random process that stops after a number of steps
that is bounded by the maximum number of edges present in
an input graph and produces a maximal frequent subgraph.
A similar process is already applied in Gunopoulos et al.
[17] within a Las Vegas variant of the Dualize and Advance



algorithm. More precisely, it is used for the internal ran-
domization of an algorithm with an otherwise deterministic
output (all maximal frequent and minimal infrequent sets of
a given input database). When applied for the final pattern
discovery, however, this random process has the weakness
that it provides no control over the generation probabilities
of individual patterns.

Several papers propose to overcome this weakness by ap-
plying the Markov chain Monte Carlo method. Boley and
Grosskreutz [7] proposes frequent set sampling to approx-
imate the effect of specific minimum frequency thresholds.
The proposed algorithm simulates a simple Glauber dynamic
on the frequent set lattice: starting in the empty set, in each
subsequent time step a single item is either removed or added
to the current set. A similar Markov chain Monte Carlo
(MCMC) method is used in Zaki and Al Hasan [2] for gen-
erating a representative set of graph patterns. These MCMC
methods provide limited control of the generation probabil-
ities, namely about the infinite limit of the distribution of
the current state. The worst-case convergence can, however,
be exponentially slow in the size of the input database. For
sampling from the family of frequent patterns, this prob-
lem appears to be inherent: almost uniform frequent pat-
tern sampling can be used for approximate frequent pattern
counting, which one can show to be intractable under rea-
sonable complexity assumptions (see [7]). Similar conclu-
sions can be drawn for enumeration spaces defined by lin-
early scaled versions of the frequency measure such as the
standard optimistic estimator for the binomial test quality
function in subgroup discovery [24].

In order to avoid this implication of hard-constraint-based
pattern discovery (e.g., using a hard frequency threshold),
Boley et al. [6] combines pattern space sampling with soft-
constraint-based pattern discovery [5]—resulting in the pat-
tern sampling paradigm described in Section 1.1 above. Still,
the underlying method is again MCMC-based, and, despite
using a more sophisticated chain defined on the closed set
lattice of the input database, it shares the practical weak-
nesses of this technique. This given paper now retains the
idea of controlled pattern sampling without hard constraints,
but proposes novel pattern generation methods that are ex-
act and direct, i.e., they do not involve MCMC process sim-
ulation. Consequently, the resulting pattern discovery pro-
cesses are efficient not only theoretically but also on a wide
range of real-world benchmark datasets.

2. PRELIMINARIES
Before going into technical details, we fix some basic notions
and notation. For a finite set X we denote by P(X) its
power set and by u(X) the uniform probability distribution
on X. Moreover, for positive weights w : X → R+ let w(X)
denote the distribution on X arising from normalizing w,
i.e., the distribution described by x 7→ w(x)/

∑
x′∈X w(x)—

assuming that there is an x ∈ X with w(x) > 0.

A binary dataset D over some finite ground set E is a
bag (multiset) of sets, called data records, D1, . . . , Dm
each of which being a subset of E = {e, . . . , en}. As size
of D, denoted ‖D‖ we define the sum of all its data record
sizes

∑
D∈D = |D|. Inspired by the application of mar-

ket basket analysis the elements of E are often referred to

as “items”. More generally, one can think of E as a set
of binary features describing the data records. In particu-
lar, a categorical data table can easily be represented as a
binary dataset by choosing the ground set as consisting of
all attribute/value equality expressions that can be formed
from the table. More precisely, a categorical data ta-
ble T consisting of m data row vectors d1, . . . , dm with
di = (di(1), . . . , di(n)) can be represented by the dataset
DT = {D1, . . . , Dm} with Di = {(j, v) : di(j) = v} over
ground set

ET = {(j, di(j)) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} .

For a given dataset D over E, the pattern space (or pat-
tern language) L(D) considered in this paper is the power
set P(E) of the features and its elements are interpreted
conjunctively. That is, the local data portion described by a
set F ⊆ E, called the support (set) of F in D and denoted
D[F ], is defined as the multiset of all data records from D
that contain all elements of F , i.e., D[F ] = {D ∈ D : D ⊇
F}.

An interestingness measure for a pattern language L(·)
is a function

q : {(D, x) : D a binary dataset, x ∈ L(D)} → R .

However, often there is a fixed dataset that is clear from
the context. In such cases—and if we want to simplify the
notation—we just write q as an unary function q(·) = q(D, ·)
and omit the first argument. The most basic measures for set
patterns are the support (count), i.e., the size of its sup-
port set qsupp(D, F ) = |D[F ]| and the frequency, i.e., the
relative size of its support with respect to the total number
of data records qfreq(D, F ) = |D[F ]| / |D|. For a frequency
threshold t ∈ [0, 1] a set is called t-frequent (w.r.t. D) if
qfreq(D, F ) ≥ t. A further measure considered here is the
area function [15] qarea(D, F ) = |F | |D[F ]|. Intuitively,
the area of a set corresponds to the number of 1 entries of
the submatrix (of the binary matrix representation of D)
consisting of the columns corresponding to F and the rows
corresponding to D[F ].

All measures defined so far are unsupervised measures in
the sense that they rely on no further information but the
dataset itself. In contrast, there are so-called supervised de-
scriptive rule induction techniques that rely on additional in-
formation in the form of class labels l(D) ∈ C = {c1, . . . , ck}
associated to each data record D ∈ D. For c ∈ C we denote
by Dc the data portion labeled c, i.e., Dc = {D ∈ D : l(D) =
c}. Examples for this setting are emerging pattern mining
[12] and contrast set mining [3], where one is interested in
patterns having a high support difference between the pos-
itive and the negative portion of the data records, or sub-
group discovery [24], where one searches for patterns with a
high distributional unusualness of these labels on their sup-
port set. In important special case are binary labels, i.e.,
C = {⊕,	}. For this case we consider the following dis-
criminativity measure

qdisc(F ) = |D⊕[F ]| |D	 \ D	[F ]| .

A further measure for the discriminative power of a pattern
is the Fisher score qfish, which is defined for datasets with
arbitrary labels C. Intuitively, it measures the relation of the



inter-class variance of a feature to its intra-class variances,
i.e.,

qfish(F ) =

∑
c∈C |Dc| (qfreq(Dc, F )− qfreq(D, F ))2∑
c∈C

∑
D∈Dc

(δ(D ⊇ F )− qfreq(Dc, F ))2

where δ(D ⊇ F ) is 1 if D ⊇ F and 0 otherwise. This pa-
per does not present a sampling algorithm for this measure.
However, the Fisher score is used for post-processing gener-
ated patterns in the context of constructing global classifi-
cation models.

3. SAMPLING ALGORITHMS
After the introduction of set patterns and interestingness
measures, we can now present our sampling procedures. A
naive approach for sampling a pattern according to a dis-
tribution π is to generate a list F1, . . . , FN of all patterns
with π(F ) > 0, draw an x ∈ [0, 1] uniformly at random,

and then return the unique set Fk with
∑k−1
i=1 π(Fi) ≤ x <∑k

i=1 π(Fi). However, the exhaustive enumeration of any
non-constant part of the pattern space is precisely what we
want to avoid. That is, we are interested in non-enumerative
sampling algorithms. Below we give such algorithms for four
quality functions: frequency and squared frequency as well
as area and discriminativity.

Note that, in contrast to the frequency measures, for the
latter to quality functions it is NP-hard to find optimal
patterns: Finding a set of maximum area for a given in-
put dataset is equivalent to the NP-hard problem of com-
puting a biclique with a maximum number of edges from a
given bipartite graph (see [15]). The same hardness result
holds for the discriminativity measure because optimizing
area can be linerarly reduced to optimizing discriminativ-
ity: by setting D⊕ to D and D	 to {E \ {e} : e ∈ E} we get
qdisc(D⊕ ∪ D	, F ) = qarea(D, F ).

3.1 Frequency and Area
Algorithm 1 Frequency-based Sampling

Require: dataset D over ground set E,
Returns: random set R ∼ qfreq(P(E)) = qsupp(P(E))

1. let weights w be defined by w(D) = 2|D| for all D ∈ D
2. draw D ∼ w(D)
3. return R ∼ u(P(D))

We start with sampling according to frequency and area,
both of which can be achieved by very similar linear time
algorithms. The key insight for frequency-based sampling,
i.e., π = qfreq(P(E)), is that random experiments are good
in reproducing frequent events. Namely, if we look at a
pattern that is supported by a random data record we are
likely to observe a pattern that is supported by many data
records altogether. This intuition leads to a two-step non-
enumerative sampling routine (see Algorithm 1), which is as
fast as simple: First select a data record of the input dataset
randomly with a probability proportional to the size of its
power set. Then return a uniformly sampled subset of that
data record. Using the size of the power set in the first
step is important, as otherwise the sampling routine would
be biased towards sets occuring in small data records. As

noted in Proposition 1 below, the random set resulting from
combining both steps follows the desired distribution.

Regarding the computational complexity of the sampling al-
gorithm we can observe that it is indeed efficient: if one has
knowledge of the numbers |D| for all data records D ∈ D
and, moreover, has index access to all data records, a single
random set can be produced in time O(log |D| + |E|) (the
two terms correspond to producing a random number for
drawing a data record in step 1 and of drawing one of its
subsets in step 2). Both requirements can be achieved via
a single initial pass over the dataset. Thus, we have the
following proposition.

Proposition 1. On input dataset D over E, a family of
k realizations of the random set R ∼ qfreq(P(E)) can be
generated in time O(‖D‖+ k(|E|+ ln |D|)).

Proof. Let Z be the normalizing constant
∑
F⊆E |D[F ]|

and D denote the random data record that is drawn in step 2
of the algorithm. For the probability distribution of the
returned random set it holds that

P[R = R] =
∑
D∈D

P[R = R ∧D = D]

=
∑

D∈D[R]

1

2|D|
2|D|

Z

=
|D[R]|
Z

=
qsupp(D, R)

Z

with a normalizing Z =
∑
D∈D 2|D| (which is equal to the

desired
∑
F⊆E |D[F ]|).

Algorithm 2 Area-based Sampling

Require: dataset D over ground set E,
Returns: random set R ∼ qarea(P(E))

1. let weights w be defined for all D ∈ D by

w(D) = |D| 2|D|−1

2. draw D ∼ w(D)
3. draw k ∼ id ({1, . . . , |D|}) with weights id(i) = i
4. return R ∼ u({F ⊆ D : |F | = k})

Sampling according to area, i.e., π = qarea(P(E)), can be
achieved via a slight modification of frequency-based sam-
pling: in step two, instead of drawing a subset uniformly
from a data record, draw a subset with probability propor-
tional to its size. As side effect, this modication affects the
normalization constants and in particular the data record
weights of step one. As for a data record D it holds for the
sum of all its subset sizes that∑

F⊆D

|F | = |D| 2|D|−1

we have to modify the data record weights accordingly. The
resulting pseudo-code is given in Algorithm 2. Again, after
all weights have been computed via in initial pass over the
data, an arbitrary number of random sets can be produced
in time O(log |D|+ |E|). Hence, with a similar proof as for
Proposition 1 we can conclude:



Proposition 2. On input dataset D over E, a family of
k realizations of the random set R ∼ qarea(P(E)) can be
generated in time O(‖D‖+ k(|E|+ ln |D|)).

It is an important remark that area can be replaced by
weighted area relatively easy without changing the asymp-
totic complexity—where weighted area is defined as

qware(F ) =

(∑
e∈F

w(e)

) ∑
D∈D[F ]

w(D)


for a set of positive weights w : (E ∪ D) → R+. The same
holds for weighted frequency. In this paper, however, for the
sake of simplicity we only consider the unweighted case.

3.2 Discriminativity and Squared Frequency
Algorithm 3 Discriminativity-based Sampling

Require: binary labeled dataset D over ground set E
such that there is an F ⊆ E with qdisc(F ) > 0

Returns: random set R ∼ qdisc(P(E))

1. let weights w be defined by

w(D⊕, D	) = (2|D⊕\D	| − 1)2|D⊕∩D	|

for all (D⊕, D	) ∈ D⊕×D	
2. draw (D⊕, D	) ∼ w(D⊕ ×D	)
3. draw F ∼ u(P(D⊕ \D	) \ ∅) and F ′ ∼ u(P(D⊕ \D	))
4. return R = (F ∪ F ′)

In order to design a sampling procedure for discriminativity,
i.e., π = qdisc(P(E)), we can lift the principle of frequency-
based sampling to a little more complicated random exper-
iment with the following intuition. If we look at a pattern
that is supported by a random positive data record and not
supported by a random negative data record, we are likely
to observe a pattern that is altogether supported by many
positive data records and only few negative data records,
i.e., we are likely to observe a pattern with a relatively high
discriminativity score. Again, in order to control the re-
sulting distribution, it is necessary consider a pair of data
records (D⊕, D	) with a probability equal to the number
of sets F ⊆ E with F ⊆ D⊕ and F 6⊆ D	. This im-
plies that the increased expressivity of discriminativity com-
pared to frequency comes at a price: due to the necessity
of weight computation for all pairs of positive and nega-
tive data records, we end up with a quadratic preprocessing
phase. Algorithm 3 contains all details of the resulting sam-
pling procedure and leads to the following result.

Proposition 3. Let D be a binary labeled input dataset
over ground set E such that there is a set F ⊆ E with
qdisc(D, F ) > 0. A family of k realizations of the random
set R ∼ qdisc(P(E)) can be generated in time O(‖D‖2 +
k(|E|+ ln2 |D|)).

Proof. Let R denote the random set returned in step 4
of the algorithm and D⊕, D	 the data records drawn in
step 2. Moreover, for D ∈ D⊕ and D′ ∈ D	 let δ(D,D′)
denote the family of all sets F ⊆ E that are supported by

D but not supported by D′. We can rewrite this definition
as

δ(D,D′)

={F ⊆ E : F ⊆ D,F 6⊆ D′}
={F ∪ F ′ : ∅ ⊂ F ⊆ (D \D′), F ′ ⊆ (D ∩D′)} .

This form shows that the weights w(·, ·) assigned in step 1
are equivalent to |δ(·, ·)| and that, moreover, R is a set drawn
uniformly from δ(D⊕,D	). With this we can conclude sim-
ilar to the previous algorithms that

P[R = F ] =
∑
D∈D⊕

∑
D′∈D	

P[R = F,D⊕ = D,D	 = D′]

=
∑

D,D′∈δ−1[F ]

1

|δ(D,D′)|
w(D,D′)

Z

=
1

Z

∣∣{(D,D′) ∈ D⊕ ×D	 : D ⊇ F,D′ 6⊇ F}
∣∣

=
1

Z
|D⊕[F ]| (|D	| − D	[F ])

with Z =
∑
D,D′∈D⊕×D	 |δ(D,D

′)| =
∑
F⊆E qdisc(F ) as

required.

Algorithm 4 Squared-frequency-based Sampling

Require: dataset D over ground set E,
Returns: random set F ∼ q 2

freq(P(E)) = q 2
supp(P(E))

1. let weights w be defined by

w(D1, D2) = 2|D1∩D2|

for all (D1, D2) ∈ D ×D
2. draw (D1, D2) ∼ w(D ×D)
3. return F ∼ u(P(D1 ∩D2))

It is straightforward to see that the approach of drawing two
data records can also be used to express other potentially
interesting distributions that are given as the product of
two support counts. A basic example is squared frequency.
In order to achieve this distribution, one can consider a uni-
formly2 drawn subset of two random data records, i.e., a sub-
set of their intersection. The resulting pseudo-code with ap-
propriate pairwise weights is given in Algorithm 4. Closely
following the proof of Prop. 3 this algorithm can be used to
show another proposition.

Proposition 4. On input dataset D over E, a family of
k realizations of the random set R ∼ q 2

freq(P(E)) can be

generated in time O(‖D‖2 + k(|E|+ ln2 |D|)).

In principle, one can design sampling algorithms for an abi-
trary power c of the frequency measure by drawing a subset
from c random data records. However, the resulting time
complexity for computing the weights for each c-tuple of
data records gets out of hand quickly.

2For sampling according to the squared area function, draw
a subset with probabilities proportional to its squared size
instead of uniformly.



4. EVALUATION
The sampling procedures presented in the previous section
are provably efficient and correct, i.e., their randomized out-
put follows the specified distributions. It remains to evalu-
ate, beside their practical scalability, how useful these dis-
tributions are in the context of local pattern discovery. It is
inherently difficult to evaluate pattern discovery methods in
an exploratory data analysis context. There one aims to find
interesting patterns, which relies on an often user-subjective
notion of interestingness. Hence, here we resort to the other
branch of local pattern discovery applications, i.e., pattern-
based global model construction, which allows us to simply
use accuracy as objective evaluation metric.

dataset class nm/ct items rows density

autos 7 15/10 135 205 0.190
balance-scale 3 4/0 20 625 0.250
breast-cancer 2 0/9 51 286 0.195
colic 3 7/15 84 366 0.271
credit-a 2 6/9 71 690 0.223
diabetes 2 8/0 40 768 0.225
glass 7 9/0 45 214 0.222
heart-c 5 6/7 49 303 0.285
heart-h 5 6/7 46 294 0.246
heart-statlog 2 13/0 55 270 0.254
hepatitis 2 6/13 55 155 0.344
hypothyroid 4 7/22 78 3772 0.364
iris 3 4/0 20 150 0.250
lymph 4 3/15 57 148 0.333
prim.-tumor 22 0/17 37 339 0.468
sonar 2 60/0 300 208 0.203
tic-tac-toe 2 0/9 27 958 0.370
vehicle 4 18/0 90 846 0.211
zoo 7 1/16 135 101 0.133

Table 1: Benchmark datasets with basic statistics:
number of classes |C|, number of numerical and cat-
egorical columns (nm/ct), number |ET | of items in
corresponding binary dataset, number of rows, den-
sity |DT | |ET | /‖DT ‖.

In our experiments we use a variety of databases from the
UCI machine learning repository [14] listed in Table 1. In or-
der to apply the pattern discovery algorithms, binary datasets
are created from these databases by first converting them
into categorical datatables using five bucket frequency dis-
cretization of all numeric data columns, and then by consid-
ering the corresponding binary datasets (using attribute /
value pairs of categorical attributes as items; see Section 2).
Implementations of the sampling algorithms are available in
the software section of http://www-kd.iai.uni-bonn.de.

4.1 Predictive Performance
We start with experiments evaluating the sampling algo-
rithms in the context of pattern-based classification. Here
one aims to improve classification accuracy by enriching
given labeled training data with pattern-based features. We
closely follow the framework of Cheng et al. [9]. In a nutshell
it consists of three basic steps: extraction of a collection of
patterns (which are subsequently considered as features of
the data records supporting them), feature selection based
on Fisher score and pattern redundancy, and classification,
for which we use a linear support vector machine.

In more detail, for an input data table T with corresponding

binary dataset DT = D and class labels C = {1, . . . , c} the
following pattern collections are considered:

• a frequent sets collection F consisting of the union of
the collection of t-frequent sets of each of the datasets
D1, . . . ,Dc where t ∈ {1, 0.95, . . . , 0.5} is chosen mini-
mal such that |F| is less than 200, 000 (number is cho-
sen to keep computation times including feature selec-
tion below five minutes per training dataset)

as well as three collections each consisting of k = α |D| in-
dependent random sets, namely

• a frequency-based collection Rfrq where the i-th set is
sampled according to qfreq(Ddic/ke,P(E)),

• a squared-frequency-based collection Rsfr where the i-
th set is sampled according to q 2

freq(Ddic/ke,P(E)),

• and a discriminativity-based collection Rdcr where the
i-th set is sampled according qdisc(D⊕∪D	,P(E)) with
D⊕ = Ddic/ke and D	 = D \ Ddic/ke.

Area-based sampling is not considered here, because it is
not designed towards providing good features for classifi-
cation. The parameter α is set to 32 independent of the
dataset. With this setting, the pattern selection process is
sufficiently stable as captured by the average Fisher score of
finally selected features (using the selection procedure de-
scribed below). See Figure 2 for an illustration on three
exemplary datasets.

Figure 2: Average Fisher score of the squared-
frequency-based random pattern collection resulting
from different values of α.

The feature selection step for a pattern collection P is
then performed as follows: initialize P0 = ∅ and consider all
sets F1, . . . , Fl ∈ P having qfreq(D, ·) ≥ 0.05 in descending
order of their Fisher score qfish(D, ·). Select Fi if

qfish(Fi)− max
F∈Pi

(r(Fi, F ) min{qfish(Fi), qfish(F )}) > 0

where Pi is the family of sets already selected when consid-
ering Fi and r(·, ·) is the redundancy measure given by

r(F, F ′) =
qfreq(D, F ∪ F ′)

qfreq(D, F ) + qfreq(D, F ′)− qfreq(D, F ∪ F ′) .



Note that this is a deviation from Cheng et al. where after
each selection the remaining patterns are reordered accord-
ing to the above expression (again, our intention is to avoid
computation times of more than five minutes per training
dataset). The selection process is stopped after all patterns
have been considered or if Pi covers 80% of the dataset, i.e.,∣∣∣∣∣∣

 ⋃
F∈Pi

D[F ]

 / |D|

∣∣∣∣∣∣ < 0.2 |D| .

For the final pattern collection P ′ the original data table T
is then augmented by binary attributes corresponding to the
elements of F1, . . . , Fk ∈ P ′. That is, the augmented table
T ′ has n+ |P ′| columns with rows defined by

t′i(j) =


ti(j), if j ≤ n
1, if j > n and Di ⊇ Fj−n
0, otherwise

where Di is the data record of DT corresponding the the
i-th row of T .

dataset plain F qfreq q2
freq qdisc

autos 79.50 78.25 79.00 79.50 80.00
balance-scale 84.59 84.59 84.59 84.59 84.59
breast-cancer 70.36 74.28 74.11 73.57 73.39
colic 61.39 60.14 61.39 61.39 61.39
credit-a 85.84 86.50 84.96 86.50 86.13
diabetis 74.80 74.14 74.47 74.14 74.40
glass 62.93 68.29 68.78 69.02 66.58
heart-c 79.83 81.87 82.21 81.53 80.00
heart-h 81.48 81.75 81.05 81.75 81.40
heart-statlog 80.76 83.21 82.64 82.64 83.21
hepatitis 81.67 83.00 83.00 83.33 83.00
iris 89.31 88.62 88.62 88.97 88.28
lymph 82.86 82.50 83.93 84.28 83.57
primary-tumor 40.30 46.36 45.61 46.67 45.76
sonar 80.00 78.50 80.00 78.75 80.00
tic-tac-toe 77.05 99.21 99.42 86.26 94.53
vehicle 68.27 68.87 68.69 68.69 69.05
zoo 91.05 91.58 92.10 91.58 91.58

Table 2: Results of SVM classification on plain
database and with feature enrichment based on fre-
quent sets and sampled pattern collections (fre-
quency, squared frequency, and discriminativity).

As classifier the linear SVM of the LIBSVM software is
used wrapped in an optimization layer for its regulariza-
tion parameter c. That is, the training set is first used to
determine the optimal regularization parameter c ∈ {2i :
i = −5,−3, . . . , 14} using 5-fold cross-validation and then a
model is trained with the optimal parameter using the com-
plete training set. The complete workflow is validated using
two times 5-fold cross-validation for all pattern collections
simultaneously.

Table 2 contains the results. A Wilcoxon signed ranks test
(see [11]) for our N = 18 databases reveals that pattern-
based classification with each of the random set collections
outperforms the plain SVM significantly at the 2%-level (t-
values of 30.5, 22.0, and 21.5 respectively; critical value 33).

Moreover, albeit all random set collections are lying ahead
of the frequent set collection on our test databases, it is not
significantly outperformed by any of them. We can conclude
that pattern-based classification based on all tested sampling
algorithms is likely to outperform the plain SVM, and is
unlikely to be inferior to standard frequent-pattern-based
classification.

4.2 Scalability
Having evaluated the quality of the sampled patterns we
now turn to scalability studies. The theoretical potential of
the direct sampling procedures is already indicated by the
guarantees of Propositions 1-4. In particular for frequency
and area-based sampling they suggest applicability on larger
to large-scale datasets. Below we investigate to what degree
this potential can be transferred into practice.

Regarding a comparison with the MCMC pattern sampling
algorithms, the practical advantages are very clear: while
for instance the closed set Markov chain simulation [6] takes
seven minutes to sample a closed set from a 30K row sub-
set of the US census dataset, frequency-based direct sam-
pling takes only 0.067 seconds for the first sample including
preprocessing—afterwards additional samples can be pro-
duced in milliseconds.

Figure 3: Time of lcm versus time of frequency-
based sampling for an identical number of patterns.

For a comparison with exhaustive search algorithms there is
a very large number of possible contenders in the literature,
each of which in principle requires an individual compara-
tive study. Hence, for this paper we resort to a rather gen-
eral setting that constitutes a certain worst-case setting: we
compare the computation time of the sampling algorithms
with that of the linear closed frequent set mining algorithm
(lcm) of Uno et al. [23] per pattern. This constitutes a
worst-case setting because frequent set mining algorithms
usually produce the largest output per time unit and lcm
is known to be among the fastest of them (winner of the
FIMI contest [4]). In addition to the datasets used for the
predictive performance study, we also consider several of the
larger benchmark datasets of the FIMI workshop, including
the 1GB sized “webdocs”, and a 500MB random dataset.



The results are presented as log/log scatter-plot in Figure 3.
One can observe that for most configurations lcm and the
frequency-based sampling generate their patterns in approx-
imately equal time with the majority of wins going to the
sampling. However, focusing on the configurations with
large-scale datasets (star symbol) reveals that the sampling
algorithm can substantially outperform lcm. For “webdocs”
this includes a speed-up factor of 10, for the random dataset
even one of 25. We can conclude that frequency-based sam-
pling can substantially outperform (closed) frequent set list-
ing on large datasets and it performs equally well with slight
advantage on small-scale data.

hepatitis heart-c glass.dat colic
0.03 0.05 0.03 0.05

bal.-scale vehicle lymph autos
0.1 0.15 0.03 0.03

credit-a b-cancer tumor heart-h
0.2 0.03 0.05 0.05

zoo iris h-statlog hypothyroid
0.03 0.03 0.03 13.69

Table 3: Preprocessing time, i.e., weight computa-
tion, for squared-frequency sampling.

While the time performance of frequency-based sampling is
also representative for area-based sampling, this is not true
for the two sampling procedures with quadratic time weight
computation phase. For several datasets the time for this
preprocessing step is listed in Table 3. One can observe that
for the smaller datasets, weight computation time is only
marginal. Moreover, after this phase the performance is es-
sentially equal to frequency-based sampling. However, for
large-scale datasets the quadratic complexity is prohibitive;
as already indicated on the 4000 row dataset “hypothyroid”.
Also, including the preprocessing phase squared-frequency-
based sampling can generally not compete with lcm (again
measured per pattern). Naturally, the same holds for sam-
pling based on discriminativity.

Figure 4: Average Fisher score of selected patterns
per collection size for “lymph”.

We conclude this section with a note on pattern quality per
time—or equally per collection size because all methods (ne-
glecting the preprocessing phase) use roughly linear time in
the size of the pattern collections they produce. Here, we
again use the feature selection procedure from Section 4.1
and consider the average Fisher score of selected features

Figure 5: Average Fisher score of selected patterns
per collection size for “hypo”.

from frequent set respectively random set families of differ-
ent sizes. Naturally, the outcome depends on whether the
datasets contains high-frequency patterns with discrimina-
tive power. If this is the case, frequent sets can quickly pro-
vide good features (see, e.g., Figure 4). However, it is not
uncommon to observe cases in which there is an extremely
large number of high-frequency patterns, non of which pos-
sesses any discriminative power. In such cases, the sampling
approaches need to generate substantially fewer patterns to
provide good features than a frequent set listing algorithm
(see, e.g., Figure 5).

5. CONCLUSION
We introduced four simple direct sampling procedures that
generate random set patterns distributed according to fre-
quency, squared frequency, area, and a discriminativity mea-
sure for binary labels. All procedures come with tight the-
oretical performance guarantees. Moreover, we described
experimental studies demonstrating that the produced pat-
terns are as useful as frequent pattern collections for pattern-
based classification, and that direct sampling can compete
with and often even outperform the fastest exhaustive min-
ing algorithms when generating an equal number of patterns.

In the context of pattern-based classification there is a large
amount of pattern discovery approaches that range from
optimistic-estimator-based best-first-search algorithms [21]
to methods interweaving model training and pattern dis-
covery [10, 13]. Although such algorithms typically traverse
much less patterns per time unit as lcm, their search is more
directed towards high quality patterns. This motivates an
in-depth comparative study with such methods potentially
leading to more sophisticated usage of the sampling algo-
rithms (e.g., applying it within model training just as the
cited approaches do with exhaustive mining).

That said, pattern sampling as a paradigm is in no way re-
stricted to pattern-based classification, and should also be
evaluated for other in particular unsupervised model con-
struction tasks as well as for exploratory data analysis. This
is likely to motivate further variants of pattern sampling
procedures. An example is the introduction of column and
row weights to the interestingness measure in order to model
subjective interest in certain parts of the input data or to de-
crease the probability of re-discovering redundant patterns.
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