FONDEMENTS DES BASES DE DONNÉES

Complétude du système d'Armstrong et relations d'Armstrong

Équipe pédagogique BD

https:

//perso.liris.cnrs.fr/marc.plantevit/doku/doku.php?id=lifbdw2_2020a

Version du 25 septembre 2020

Complétude du système d'Armstrong (1/4)

Preuve formelle

Une preuve (formelle) de f à partir de Σ dans le système d'Armstrong notée $\Sigma \vdash f$ est une séquence $\langle f_0, \ldots, f_n \rangle$ de DFs telles que $f_n = f$ et $\forall i \in [0..n]$:

- ▶ soit $f_i \in \Sigma$;
- ▶ soit f_i est la conséquence d'une règle du système d'Armstrong (réfléxivité, transitivité, augmentation) dont toutes les prémisses $f_0 \dots f_p$ apparaissent avant f_i dans la séquence.

Complétude : prouver que $\Sigma \models X \to Y \Rightarrow \Sigma \vdash X \to Y$

Il faut bien faire la différence entre

- ▶ la fermeture sémantique : $X^+ = \{A \mid \Sigma \models X \rightarrow A\}$
- ▶ la fermeture syntaxique : $X^* = \{A \mid \Sigma \vdash X \rightarrow A\}$

Complétude du système d'Armstrong (2/4)

Lemme : $\Sigma \vdash X \rightarrow Y \Leftrightarrow Y \subseteq X^*$

- (\Rightarrow) On suppose sans perte de généralité que $Y = A_1 \dots A_n$. Pour chaque A_i , par réflexivité on a $Y \to A_i$ et on peut prolonger la preuve de $\Sigma \vdash X \to Y$ par transitivité pour obtenir une preuve $\Sigma \vdash X \to A_i$. Ainsi $\forall A_i \in Y$ on a bien $A_i \in X^*$ et donc $Y \subseteq X^*$.
- (\Leftarrow) Supposons que $Y \subseteq X^* = \{A \mid \Sigma \vdash X \to A\}$, par définition de X^* on a une preuve de $\Sigma \vdash X \to A_i$ pour chaque A_i , dès lors, on peut concaténer toutes ces preuves et conclure par l'application de la règle de composition qu'on a prouvé valide.

Complétude du système d'Armstrong (3/4)

On va avoir le raisonnement logique suivant :

$$\Sigma \models X \to Y \Rightarrow \Sigma \vdash X \to Y$$

$$\equiv \Sigma \not\vdash X \to Y \Rightarrow \Sigma \not\models X \to Y$$

$$\equiv \Sigma \not\vdash X \to Y \Rightarrow \exists r. (r \models \Sigma \land r \not\models X \to Y)$$

L'astuce consiste à exhiber l'instance r, avec $X^* = X_1 \dots X_n$ et $Z_1 \dots Z_p = R \setminus X^*$

Cette instance vérifie bien $r \models \Sigma$ et $r \not\models X \rightarrow Y$

Complétude du système d'Armstrong (4/4)

- Prouvons $r \models \Sigma$ par l'absurde. Supposons $V \to W \in \Sigma$ et $r \not\models V \to W$ pour aboutir à une contradiction. $r \not\models V \to W$, par définition de \models on a $s[V] = t[V] \land s[W] \neq t[W]$, par construction de r cela implique $V \subseteq X^*$ et $W \not\subseteq X^*$. D'après le lemme $V \subseteq X^*$ implique $\Sigma \vdash X \to V$ et par transitivité avec $V \to W \in \Sigma$ on obtient $\Sigma \vdash X \to W$. Or d'après le lemme (dans l'autre sens) on déduit que $W \subseteq X^*$, une contradiction.
- ▶ Prouvons que $r \not\models X \to Y$. Pour cela, supposons, $r \models X \to Y$ par construction de r on a s[Y] = t[Y] et donc $Y \subseteq X^*$. D'après le lemme on a $\Sigma \vdash X \to Y$, une contradiction.

Le théorème est prouvé : $\Sigma \models X \to Y \Leftrightarrow \Sigma \vdash X \to Y$ et $X^\star = X^+$

Les relations d'Armstrong

Le corps de la preuve de complétude

- La construction de r est un exemple d'une relation qui vérifie toutes les dépendances de Σ de la forme $X \to Y$ mais ne satisfait pas les autres avec X en partie gauche.
- On va répéter la construction de s, t dans la preuve pour chaque dépendance de Σ et avoir une instance qui concerne toutes les dépendances possibles.

Objectif et intérêt des relations d'Armstrong

- ► Représenter sur un exemple un ensemble de contraintes et uniquement celui-ci, i.e. toutes les autres contraintes sont fausses.
- ► Celle permet une représentation *par l'exemple* d'ensemble de dépendances : on manipule des valeurs, visualisation plus simple des éventuels conflits, d'incohérences, de mauvaise conception...

Construction de la relation

- ▶ Calculer les fermés de Σ : $CI(\Sigma) = \{X^+ \mid X \subseteq R\}$
- ► Construire la relation d'Amstrong *r* correspondante :
 - ► Etape 0 : pour le fermé particulier R, construire le tuple $t_0 = \langle 0, \dots, 0 \rangle$
 - **Etape** i : pour chaque $X \in Cl(\Sigma)$, ajouter un tuple t_i à r :
 - ▶ tel que $t_i[A] = 0$ pour tout $A \in X^+$
 - ▶ tel que $t_i[B] = i$ pour tout $B \in (R \setminus X^+)$.

Instance canonique

Avec les mêmes arguments que dans la preuve de complétude :

- ▶ r vérifie chaque dépendance : $f \in \Sigma$ implique $r \models f$
- ▶ r ne vérifie aucune dépendance qui ne soit pas déductible : $\Sigma \not\models f$ implique $r \not\models f$

Exemple

Considérons :

- ▶ la relation $R = \{A, B, C\}$
- ▶ l'ensemble de DFs $\Sigma = \{A \rightarrow BC, B \rightarrow C\}$
- $\triangleright CI(F) = \{ABC, BC, C\}$

Relation d'Armstrong pour Σ

Exemple

Considérons :

- ▶ la relation $R = \{A, B, C\}$
- ▶ l'ensemble de DFs $\Sigma = \{A \rightarrow BC, B \rightarrow C\}$
- $CI(F) = \{ABC, BC, C\}$

Relation d'Armstrong pour Σ

r	Α	В	С
ABC	0	0	0
BC	1	0	0

Exemple

Considérons :

- ▶ la relation $R = \{A, B, C\}$
- ▶ l'ensemble de DFs $\Sigma = \{A \rightarrow BC, B \rightarrow C\}$
- $\triangleright CI(F) = \{ABC, BC, C\}$

Relation d'Armstrong pour Σ

r	Α	В	С
ABC	0	0	0
BC	1	0	0
C	2	2	0

Exercice

Soit Σ l'ensemble de dépendances $AB \rightarrow C$ $C \rightarrow A$ $BC \rightarrow D$ $ACD \rightarrow B$ $D \rightarrow E$ $ABE \rightarrow C$ $C \rightarrow BD$ $CE \rightarrow A$

- 1. Calculer l'ensemble des fermés de Σ ;
- 2. Construire la base à partir des fermés.

Fin du cours.