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Evolution of Sciences

Before 1600: Empirical Science

» Babylonian mathematics: 4 basis operations done with tablets and

the resolution of practical problems based on words describing all the
steps. = that worked and they manage to solve 3 degree equations.

Ancient Egypt: No theorization of algorithms. We give only
examples made empirically, certainly repeated by students and
scribes. Empirical knowledge, transmitted as such, and not a
rational mathematical science.

Aristotle also produced many biological writings that were empirical
in nature, focusing on biological causation and the diversity of life.
He made countless observations of nature, especially the habits and
attributes of plants and animals in the world around him, classified
more than 540 animal species, and dissected at least 50.

> ...

[1 Wikipedia


https://en.wikipedia.org/wiki/History_of_science

1600-1950s: Theoretical Science
Each discipline has grown a theoretical component. Theoretical models
often motivate experiments and generalize our understanding.

> Physics: Newton, Max Planck, Albert Einstein, Niels Bohr,
Schrodinger

» Mathematics: Blaise Pascal, Newton, Leibniz, Laplace, Cauchy,
Galois, Gauss, Riemann

» Chemistry: R. Boyle, Lavoisier, Dalton, Mendeleev,

» Biology, Medecine, Genetics: Darwin, Mendel, Pasteur




1950s-1990s, Computational Science

> Over the last 50 years, most disciplines have grown a third,
computational branch (e.g. empirical, theoretical, and
computational ecology, or physics, or linguistics.)

» Computational Science traditionally meant simulation. It grew out
of our inability to find closed form solutions for complex
mathematical models.




The Data Science Era

1990’s-now, Data Science

» The flood of data from new scientific instruments and simulations

» The ability to economically store and manage petabytes of data
online

> The Internet and computing Grid that makes all these archives
universally accessible

» Scientific info. management, acquisition, organization, query, and
visualization tasks scale almost linearly with data volumes.

The Fourth Paradigm: Data-Intensive Scientific Discovery
Data mining is a major new challenge!

[ The Fourth Paradigm. Tony Hey, Stewart Tansley, and Kristin Tolle.
Microsoft Research, 2009.


http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf
http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf

Evolution of Database Technology

» 1960s: Data collection, database creation, IMS and network DBMS

» 1970s : Relational data model, relational DBMS implementation

» 1980s: RDBMS, advanced data models (extended-relational, OO,
deductive, etc.), application-oriented DBMS (spatial, scientific,
engineering, etc.)

» 1990s: Data mining, data warehousing, multimedia databases, and
Web databases

» 2000s: Stream data management and mining, Data mining and its
applications, Web technology (XML, data integration) and global
information systems, NoSQL, NewSQL.



Why Data Mining?

» The Explosive Growth of Data: from terabytes to petabytes
» Data collection and data availability
> Automated data collection tools, database systems, Web,
computerized society

» Major sources of abundant data

» Business: Web, e-commerce, transactions, stocks, ...

> Science: Remote sensing, bioinformatics, scientific simulation,. ..

> Society and everyone: news, digital cameras, social network, ...

> “We are drowning in data, but starving for knowledge!" — John
Naisbitt, 1982 —



Applications

» Human mobility (ANR VEL'INNOV 2012-2016)

Social media (GRAISearch - FP7-PEOPLE-2013-1APP, Labex IMU project
RESALI 2015-2018)

Soil erosion (ANR Foster 2011-2015)

Neuroscience (olfaction)

v

Chemoinformatics
Fact checking (ANR ContentCheck 2016 — 2019)

Industry (new generation of product, failure detection)

vV v v vV v .Y



What is Data Mining

» Data mining (knowledge discovery from data)

» Extraction of interesting (non-trivial, implicit, previously unknown

and potentially useful) patterns or knowledge from huge amount of
data

» Alternative names:

» KDD, knowledge extraction, data/pattern analysis, data archeology,
data dredging, information harvesting, business intelligence, etc.

» Watch out: Is everything “data mining”?

> simple search or query processing
> (Deductive) expert systems



KDD Process

Data Mining
» Core of KDD

» Search for knowledge in
data

- Focusing Pre- M T
Mm eamn  Functionalities
k% ey "

% ]/ mation Mining ___

Iterative and Interactive Process

» Descriptive data mining
vs Predictive data mining

Patterns/Model Knowledge

Databases

» Pattern mining,
classification, clustering,

regression

@ Fayad et al., 1996 » Characterization,

discrimination, association,
classification, clustering,
outlier and trend analysis,
etc.



Major Issues In Data Mining

» Mining methodology

>

vVVYyVvVVvYVvYYyY

>

Mining different kinds of knowledge from diverse data types, e.g.,
bio, stream, Web.

Performance: efficiency, effectiveness, and scalability

Pattern evaluation: the interestingness problem

Incorporation of background knowledge.

Handling noise and incomplete data

Parallel, distributed and incremental mining methods.

Integration of the discovered knowledge with existing one: knowledge
fusion.

Completeness or not.

» User interaction

>

>

>

Data mining query languages and ad-hoc mining.
Expression and visualization of data mining results.
Interactive mining of knowledge at multiple levels of abstraction

» Applications and social impacts

>

>

Domain-specific data mining & invisible data mining
Protection of data security, integrity, and privacy.



Where to Find References? DBLP, Google Scholar

» Data Mining and KDD
» Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD,
PAKDD, etc.
» Journals: Data Mining and Knowledge Discovery, ACM TKDD

» Database Systems

» Conferences: : ACM-SIGMOD, ACM-PODS, (P)VLDB, IEEE-ICDE,
EDBT, ICDT, DASFAA

» Journals: |IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J.,
Info. Sys., etc.

> Al & Machine Learning
» Conferences: Int. Conf. on Machine learning (ICML), AAAI, 1JCAI,
COLT (Learning Theory), CVPR, NIPS, etc
> Journals: Machine Learning, Artificial Intelligence, Knowledge and
Information Systems, |IEEE-PAMI, etc.
» Web and IR

» Conferences: SIGIR, WWW, CIKM, etc
» Journals: WWW: Internet and Web Information Systems,



Recommended Books
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U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy.
Advances in Knowledge Discovery and Data Mining. AAAI/MIT
Press, 1996

J. Han and M. Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2nd ed., 2006

D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining,
MIT Press, 2001

P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data
Mining, Wiley, 2005

Charu C. Aggarwal, Data Mining, Springer, 2015.

Mohammed J. Zaki, Wagner Meira, Jr. Data Mining and Analysis

Fundamental Concepts and Algorithms. Cambridge University Press,
2014.



ML versus DM

Predictive (global) modeling

» Turn the data into an as
accurate as possible prediction
machine.

» Ultimate purpose is
automatization.

» E.g., autonomously driving a
car based on sensor inputs

549‘,

ﬁ { M. Boley wiw.realkd.org

Exploratory data analysis.

» Automatically discover

novel insights about the
domain in which the data
was measured.

Use machine discoveries to
synergistically boost human
expertise.

E.g., understanding
commonalities and
differences among PET
scans of Alzheimers
patients.


www.realkd.org

ML versus DM

“A good prediction machine does not necessarily provide explicit insights
into the data domains”

P Y= cs ok, 2(j))

r 200 i x ey 200 it

Global linear regression model Gaussian process model.



ML versus DM

“A complex theory of everything might be of less value than a simple

observation about a specific part of the data space”
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and the power of saying “l don't know



ML versus DM

“Subgroups look similar to decision trees but good tree learners are
forced to brush over some local structure in favor of the global picture”

w

1o




ML versus DM

“Going one step further, we can find local trends that are opposed to the
global trend”

w

" 162017 Moo Bole



Roadmap

We will focus on descriptive data mining especially on Constraint-based
Pattern Mining with an inductive database vision.

Th(L,D,C)={y € L|C(¢,D) is true}

» Pattern domain: (itemset, sequences, graphs, dynamic graphs, etc.)

» Constraints: How to efficiently push them?

[4 Imielinski and Mannila: Communications of the ACM (1996).



Outline

Introduction

Frequent ltemset Mining

Constraint-based Pattern Mining
Constraint properties
Algorithmic principles



[temset: definition

Definition
Given a set of attributes A, an itemset X is a subset of attributes, i.e.,

X CA

Input:
ai az AN dp
01 d171 d1,2 e dl,n
0 | b1 doo ... dap Question
: : - How many itemsets are there?
Om dm,l dm,2 v dm,n

where d; j € {true,false}



[temset: definition

Given a set of attributes A, an itemset X is a subset of attributes, i.e.,

Definition
X CA.
Input:
ai an dp
01 d171 d1,2 dl,n
0 | b1 oo da n
Om dm71 dm,2 dm n

where d; j € {true,false}

Question
How many itemsets are there? 2M!.



Transactional representation of the data

Relational representation:
DCOxA

‘ al an . dn
01 d171 d1)2 . dl,n
02 d2,1 d2,2 . d2,n
Om dm,l dm,2 . dm,n

where d; ; € {true,false}

Example
‘31 a2 as
o] | X X X
0| X X
03 X

04 X

Transactional representation: D is
an array of subsets of A

t1
tr

tm
where t; C A

ty | a1,32,3a3

tr | a1, a2
t3 | a2
ty | a3



Frequency: definition

Definition (absolute frequency)

Given the objects in O described with the Boolean attributes in A, the
absolute frequency of an itemset X C A in the dataset D C O x A is
[{o € O|{o} x X C D}

Definition (relative frequency)

Given the objects in O described with the Boolean attributes in A, the

relative frequency of an itemset X C A in the dataset D C O x A is
[{o€O | {o} xXCD}|
O] )

The relative frequency is a joint probability.




Frequent itemset mining

Problem Definition
Given the objects in O described with the Boolean attributes in A, listing

every itemset having a frequency above a given threshold i € N.

Input:
ay daz AN dp
01 dl,l d112 e dl,n
[0} d2’1 d2’2 e dz’n L.
] ] ] ) ] and a minimal frequency € N.
Om dm71 dm72 . dm7,,

where d; j € {true,false}

HR Agrawal; T. Imielinski; A. Swami: Mining Association Rules
Between Sets of Items in Large Databases, SIGMOD, 1993.



Frequent itemset mining

Problem Definition
Given the objects in O described with the Boolean attributes in A, listing
every itemset having a frequency above a given threshold p € N.

Output: every X C A such that there are at least 1 objects having all
attributes in X.

@ R. Agrawal; T. Imielinski; A. Swami: Mining Association Rules
Between Sets of Items in Large Databases, SIGMOD, 1993.



Frequent itemset mining: illustration

Specifying a minimal absolute frequency u = 2 objects (or, equivalently,
a minimal relative frequency of 50%).

dp d> as
o | x X X
0| X X
03 X

O4 X



Frequent itemset mining: illustration

Specifying a minimal absolute frequency u = 2 objects (or, equivalently,
a minimal relative frequency of 50%).

dy dz as
o1 X X X The frequent itemsets are: (§ (4), {a1} (2),
o | x {2} (3). {as} (2) and {a, 22} (2)
03 X

O4 X



Completeness

Both the clustering and the classification schemes globally model the
data: every object influences the output. That is the fundamental reason
for these tasks to be solved in an approximate way.

In contrast, local patterns, such as itemsets, describe “anomalies” in the
data and all such anomalies usually can be completely listed.



Inductive database vision

Querying data:
{deD|q(d, D)}
where:
» D is a dataset (tuples),

> g is a query.



Inductive database vision

Querying patterns:

{XeP|O(X,D)}
where:
> D is the dataset,
» P is the pattern space,

» Q is an inductive query.



Inductive database vision

Querying the frequent itemsets:

{XeP|O(X,D)}
where:
> D is the dataset,
» P is the pattern space,

» Q is an inductive query.



Inductive database vision

Querying the frequent itemsets:

{XeP|]O(X,D)}
where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

» P is the pattern space,

> Qis an inductive query.



Inductive database vision

Querying the frequent itemsets:

{XeP|O(X,D)}

where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

> Pis 24,

> Qis an inductive query.



Inductive database vision

Querying the frequent itemsets:

{XeP|O(X,D)}

where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

> Pis 24,
» Qis (X,D)— [{o€ O|{o} x X C D} > p.



Inductive database vision

Querying the frequent itemsets:

{XeP|O(X,D)}

where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

> Pis 24,
» Qis (X,D)— f(X,D) > p.



Inductive database vision

Querying the frequent itemsets:

{XeP|O(X,D)}

where:

» D is a subset of O x A, i.e., objects described with Boolean
attributes,

> Pis 24,
» Qis (X,D)— f(X,D) > p.

Listing the frequent itemsets is NP-hard.



Naive algorithm

Input: O, ADCOXx A ueN
Output: {X C A|f(X,D) > pn}
for all X C A do
if f(X,D) > p then
output(X)
end if
end for

Question

How many itemsets are enumerated? 2.



Transactional representation of the data

Relational representation: Transactional representation: D is
DCOxA an array of subsets of A
‘ al an . an H
01 d171 d1)2 . dl,n t
02 d2,1 d2,2 cee d2,n
: : : t,
Om dm,l dm,2 s dm,n
where t; C A

where dj ; € {true false}



Transactional representation of the data

Relational representation: Transactional representation: D is
DCOxA an array of subsets of A
‘ al an . an H
01 d171 d1)2 . dl,n t
02 d2,1 d2,2 cee d2,n
: t,
Om dm,l dm,2 s dm,n
where t; C A

where d; ; € {true,false}

For a linear time verification of “X being a subset of t;", the transactions
are sorted (arbitrary order on A) in a pre-processing step and any
enumerated itemset X respects this order.



Transactional representation of the data

Relational representation: Transactional representation: D is
DCOxA an array of subsets of A
‘ al an . an H
01 d171 d1)2 . dl,n t
02 d2,1 d2,2 cee d2,n
: : : t,
Om dm,l dm,2 s dm,n
where t; C A

where dj ; € {true false}

For a linear time verification of “X being a subset of t;", the transactions
are sorted (arbitrary order on A) in a pre-processing step and any
enumerated itemset X respects this order.



Prefix-based enumeration

&

\,




Complexity of the naive approach

Question
How many itemsets are enumerated? 2/l

Question
What is the worst-case complexity of computing (X, D)?

Question
What is the worst-case complexity of computing f(X,D)? O(|O x A|).

Question

What is the worst-case complexity of the naive approach?
02110 x A|).



How to efficiently mine frequent itemsets?

Taking advantage of an
important property

» Anti-monotonicity of the
frequency

> in a levelwise enumeration (e.g.
Apriori)

@ R. Agrawal; T. Imielinski; A.
Swami: Mining Association
Rules Between Sets of Items

in Large Databases,
SIGMOD, 1993.

> in a depthfirst enumeration
(e.g. Eclat)

[ Mohammed J. Zaki, Scalable
Algorithms for Association
Mining. IEEE TKDE, 2000.




Anti-monotonicity of the frequency

Theorem
Given a dataset D of objects described with Boolean attributes in A:

V(X,Y)e2Ax 24 X C Y = f(X,D) > f(Y,D) .

ay a a3 f(0,D) = 4
o1 X X X f{a1},D) = 2
0| X X f({a1,a},D) = 2
03 x f({a1, 2,23}, D) = 1



Anti-monotonicity of the frequency

Theorem
Given a dataset D of objects described with Boolean attributes in A:

V(X,Y)e2Ax 24 X C Y = f(X,D) > f(Y,D) .

ay a a3 f(0,D) = 4
o1 X X X f({as}, D) = 2
0| X X f({a1,a3},D) = 1
03 x f({a1, 2,23}, D) = 1



Anti-monotonicity of the frequency

Corollary

Given a dataset D of objects described with Boolean attributes in A and
a minimal frequency p € N:

V(X,Y)e2Ax2A X C Y = (f(Y,D) > 1= f(X,D) zu) .

ay a a3 f(0,D) = 4
o1 X X X f({as}, D) = 2
0| X X f({a1,a3},D) = 1
o3 X f({ar, a2, a3}, D) = 1



Anti-monotonicity of the frequency

Corollary

Given a dataset D of objects described with Boolean attributes in A and
a minimal frequency p € N:

V(X,Y)e2Ax 24 X C Y = (f(X,D) < u= f(Y,D) <u) .

ay a a3 f(0,D) = 4
o1 X X X f({as}, D) = 2
(%] X X f({31 33} D) = 1
(o] X ({31 32,33} D) =1

O4 X



Pruning the enumeration tree (1 = 3)
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Pruning the enumeration tree (u = 3)




APriori enumeration

To check the frequency of every parent, the enumeration tree must be
traversed breadth-first.



APriori enumeration

To check the frequency of every parent, the enumeration tree must be
traversed breadth-first.

The two first parents (in the lexicographic order <) are close to each
other in the prefix-based tree. Indeed, they only differ by the last
attribute. Instead of considering all possible children of a parent, APriori
searches this second parent and, if found, enumerate, by union, their
child.



Level-wise enumeration of the itemsets




APriori algorithm

Input: A, D as an array of subsets of A, u € N
Output: {X C A|f(X,D) > u}
P+ {{a}|ac A}
while P # () do
P < output_frequent(P, D, 1)
P < children(P)
end while



children

Input: A lexicographically ordered collection P C 24
Output: {X C24|Vae X, X\ {a} € P} lexico. ordered
P 0
for all P, € P do
for all P, € {P, e P| Py < P\ P\ {last(P,)} = P, \ {last(P1)}
do
X+ PLUP
if VP € {X\ {member(X)}| P, < P},P € P then
P — P U{X}
end if
end for
end for
return P’



children

Input: A lexicographically ordered collection P C 24
Output: {X C24|Vae X, X\ {a} € P} lexico. ordered
P 0
for all P, € P do
for all P, € {P, e P| Py < P\ P\ {last(P,)} = P, \ {last(P1)}
do
X+ PLUP
if VP € {X\ {member(X)}| P, < P},P € P then
P — P U{X}
end if
end for
end for
return P’
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Depth-first enumeration of the itemsets
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Fail-first principle

Observation
An itemset has a greater probability to be infrequent if the frequencies of
its attributes, taken individually, are low.



Fail-first principle

Observation
An itemset has a greater probability to be infrequent if the frequencies of
its attributes, taken individually, are low.

Fail-first principle
Taking advantage of the anti-monotonicity of the frequency, it is better
to enumerate the infrequent itemsets first.



The unbalanced enumeration tree




Heuristic choice of a lexicographic order

Input: A, D as an array of subsets of A, u € N
Output: {X C A|f(X,D) > u}
P« {{a} |ac A}
while P # () do
P < output_frequent(P, D, 1)
P <« children(P)
end while

Whatever the order on A, the frequent itemsets are correctly and
completely listed...



Heuristic choice of a lexicographic order

Input: A, D as an array of subsets of A, u € N
Output: {X C A|f(X,D) > p}
P <+ {{a} | a € A} ordered by increasing f({a}, D)
while P # () do

P < output_frequent(P, D, 1)

P < children(P)
end while

Whatever the order on A, the frequent itemsets are correctly and
completely listed... but this heuristic choice usually leads to the
enumeration of much less infrequent itemsets.



lterative computation of the supports

Theorem
Given the objects in O described with the Boolean attributes in A, i.e.,
the dataset D C O x A and k € N itemsets (P;)i=1..x € (24)*:

{ocO|{o} x U P,CD}=n {ocO]|{o} x P,CD} .

{0€O[{o} x {21} CD} = {o1,0}
{o€Ol{o} x{a} CD} = {o1,02,03}
{ocO|{o} x{) CD} = {ooi}

{o€ O]{o} x{a1,a2,a3} CD} = o1}




lterative computation of the supports

Theorem
Given the objects in O described with the Boolean attributes in A, i.e.,
the dataset D C O x A and k € N itemsets (P;)i=1..x € (24)*:

{ocO|{o} x U P,CD}=n {ocO]|{o} x P,CD} .

{o€ O |{o} x{a1,a2} CD} = {o1,02}
{o€Ol{o} x{a3} S D} = {o1,04}
{o€ O|{o} x{a1,a2,a3} CD} = A{o1}




lterative computation of the supports

Theorem
Given the objects in O described with the Boolean attributes in A, i.e.,
the dataset D C O x A and k € N itemsets (P;)i=1..x € (24)*:

{ocO|{o} x U P,CD}=n {ocO]|{o} x P,CD} .

{o€ O |{o} x{a1,a2} CD} = {o1,02}
{o€O|{o} x{a,a3} CD} = {a}
{o€ O|{o} x{a1,a2,a3} CD} = A{o1}




Vertical representation of the data

Relational representation: Vertical representation: D is an
DCOxA array of subsets of O
‘ al an . an
01 d1’1 d1’2 e dl,n
0 | b1 dop ... day i .. g
: : : ' : where i C O
Om dm71 dm’z e dmﬁ,,

where dj ; € {truefalse}



Vertical representation of the data

Relational representation: Vertical representation: D is an
DCOx A array of subsets of O
‘ ay daz AN dp
01 dl,l d1’2 e dl,n
0 | by dop ... day i ... g
: : : - : where i; C O
Om dm71 dm72 ce dm n

s

where d ; € {true false}

For a linear time intersection of the i;, they are sorted (arbitrary order on

) in a pre-processing step and the support of any enumerated itemset X
will respect this order.



Vertical representation of the data

Relational representation: Vertical representation: D is an
DCOxA array of subsets of O
‘ al an . an
01 dl,l d1’2 e dl,n
0 | by dop ... day i ... g
: : : . : where i; C O
Om dm71 dm’g e dmﬁ,,

where d; ; € {truefalse}

Unless the minimal relative frequency is very low, storing the support on
bitsets provide the best space and time performances.



Eclat enumeration

Like APriori:

» The anti-monotonicity of the frequency prunes the enumeration tree;



Eclat enumeration

Like APriori:
» The anti-monotonicity of the frequency prunes the enumeration tree;

> the two first parents (in the lexicographic order <) are searched to
generate by union their child;



Eclat enumeration

Like APriori:
» The anti-monotonicity of the frequency prunes the enumeration tree;
> the two first parents (in the lexicographic order <) are searched to
generate by union their child;

» Ordering the attributes by increasing frequency heuristically leads to
the enumeration of much less infrequent itemsets.



Eclat enumeration

Like APriori:
» The anti-monotonicity of the frequency prunes the enumeration tree;

> the two first parents (in the lexicographic order <) are searched to
generate by union their child;

» Ordering the attributes by increasing frequency heuristically leads to
the enumeration of much less infrequent itemsets.

However:
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Eclat enumeration

Like APriori:
» The anti-monotonicity of the frequency prunes the enumeration tree;

> the two first parents (in the lexicographic order <) are searched to
generate by union their child;

» Ordering the attributes by increasing frequency heuristically leads to
the enumeration of much less infrequent itemsets.

However:
> the frequency of the other parents is not checked;

» thanks to that, the enumeration tree is traversed in a less
memory-hungry way (but, contrary to APriori, the supports of the
frequent itemsets are stored too).



Pruning the enumeration tree (u = 3)

A B C D E
1345 123456 2456 1356 12345
AB AC AD AE BC BD BE CD CE DE
1345 45 135 1345 2456 1356 12345 56 245 135
ABD ABE ADE BCD BCE BDE
135 1345 135 56 245 135
ABDE
135




Eclat algorithm

Input: A, D as an array of subsets of O, u € N
Output: {X C A|f(X,D) > u}
Eclat(P, i) {Initial call: P = {({a;}, ;) |j=1..mAlij| > p}}
for all (Py,ip,) € P do
output(P;)
P 0
for all (P27I.p2) S {(P27I.p2) epP |P1 < Pg} do
i ip, Nip,
if |/| > p then
PP U{(PLUPy i)}
end if
end for
Eclat(P’, 1)
end for



Pattern flooding

=2

O‘al a

a3

a4

as

a6

ar
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a3
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ais

X

» How many frequent patterns?



Pattern flooding

=2

o ‘ 91 a4 a3 a a a3 a7 a4 d9 a0 du1 412 413 14 a5

04 X X X x X
05 X X X X X
06 X X X X X
o7 X X X X X
og X X X X X

» How many frequent patterns? 1+ (2° — 1) x 3 = 04 patterns



Pattern flooding

=2

o | Xx x x x X

0| X x x x X

o3| X X x X X

04 X X X x X

05 X X X X X

06 X X X X X

o7 X X X X X
08 X X X X X

» How many frequent patterns? 1 4 (2° — 1) x 3
actually 4 interesting ones:

{}7 {317 dz, a3, da, 35}, {367 arz, das, 4o, 310}7 {2?117 a12, 413, 414, 315}.

94 patterns but



Pattern flooding

a3

a4

as

a6

ar

ag

a9

a0

a1 d12 13 die a5

p=2
[ ‘ a a
o1 | x X
o | x x
o3| x x

04
05
<5

08

» How many frequent patterns?
actually 4 interesting ones:

X

but

{}:{a1, 32, 33,24, a5}, {36, a7, ag, a9, 210}, {211, 212, A13, A14, 315}

= the need to focus on a condensed representation of frequent

patterns.

@ Toon Calders, Christophe Rigotti, Jean-Francois Boulicaut: A Survey on

Condensed Representations for Frequent Sets. Constraint-Based Mining and Inductive

Databases 2004: 64-80.



Closed and Free Patterns

Equivalence classes based on support.

01 X

03
04
O5

N

X
X X X X|w
X X X X X|O

07,05, ] .
/ B <~ C
(01029300~
—

~2.04,02,03,0405




Closed and Free Patterns

Equivalence classes based on support.

O|A B C
o1 X X X
02 X X X
03 X X
O4 X X
Oy X

» Closed patterns are maximal element of each equivalence class:
ABC, BC, and C.
» Generators or Free patterns are minimal elements (not necessary

unique) of each equivalent class: {},A and B

@ Y. Bastide, et al. Mining frequent patterns with counting inference. SIGKDD
Expl., 2000.



Few researchers (in DM) are aware about this strong
Intersection.

A strong intersection with Formal Concept Analysis (Ganter and Wille,
1999).

» transactional DB = formal context is a triple K = (G, M, I), where
G is a set of objects, M is a set of attributes, and / C G x M is a
binary relation called incidence that expresses which objects have
which attributes.

> closed itemset = concept intent
» FCA gives the mathematical background about closed patterns.

> Algorithms: LCM is an efficient implementation of Close By One.
(Sergei O. Kuznetsov, 1993).



(FIMI Workshop@ICDM, 2003 and 2004)

The FIM Era: during more than a decade, only ms were worth it!

Even if the complete collection of frequent itemsets is known useless, the
main objective of many algorithms is to earn ms according to their
competitors!!

What about the end-user (and the pattern interestingness)?

- partially answered with constraints.
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» only retrieving patterns that describe an interesting subgroup of the
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Pattern constraints

Constraints are needed for:

» only retrieving patterns that describe an interesting subgroup of the
data

» making the extraction feasible

Constraint properties are used to infer constraint values on (many)
patterns without having to evaluate them individually.

- They are defined up to the partial order < used for listing the patterns



Constraint properties - 1

B
A ’/dm =
RN

M“&./ 8 AX'A
i\ ehE
A

<
<
S

D) = C(¢1,D)

(

Anti-monotone constraint
©2,

Y1 22, C

D) = C(y2,D)

(9017

Monotone constraint

Vo1 22, C

specialization
generalization

agpNcdyp

C(e,D)

bepVceyp

C(»,D)



Constraint properties - 2

Convertible constraints
=< is extended to the prefix order < so
that Vo1 < @2, C(p2, D) = C(¢1, D)

specialization abcdd

[abc | abd [ abe |[aéd] [ace][ ade | bed | [bee ] [bde ] [cde
[ab ]
Ca b eIl e]

L]
Cp, w) = avg(w(p)) > o

generalization

w(a) > w(b) > w(c) > w(d) = w(e)

[ 3 Pei and Han — 2000

Loose AM constraints
C(p,D) = Je €

. C(p\ {e}, D)

C(p,w) =var(w(p)) <o

ﬁ Bonchi and Lucchese — 2007



Examples

veP M
P2S M
PCS AM
min(P) <o AM
min(P) > o M
max(P) <o M
max(P) < o AM
range(P) < o AM
range(P) > o M
avg(P)0o,0 € {<,=,>} | Convertible
var(w(p)) < o LAM
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Algorithmic principles



Enumeration strategy

Binary partition: the element 'a’ is enumerated




Enumeration strategy

Binary partition: the element 'a’ is enumerated

acRY\R"

R\/

RAU {a}

RY\{a}

RA



Constraint evaluation

Monotone constraint

Y
R C(RY,D) is false

RA



Constraint evaluation

Monotone constraint

Y
R C(RY,D) is false




Constraint evaluation

Anti-monotone constraint

R\/

RAC(RA, D) is false



Constraint evaluation

Anti-monotone constraint

Rv

R/\C(RA, D) is false



A new class of constraints

Piecewise monotone and anti-monotone constraints®
1. C involves p times the pattern ¢: C(p,D) = f(p1, - ¢p, D)

2. f;'#P(X) = (3017 o Pi—1, X, Qi1 7@p7D)
3. Vi=1...p, f;, is either monotone or anti-monotone:

v x < fi »(x) = fi ,(y) iff f; , is monotone
=YV o(¥) = fi »(x) iff f; , is anti-monotone

)

@ L. Cerf, J. Besson, C. Robardet, J-F. Boulicaut: Closed patterns meet n-ary
relations. TKDD 3(1) (2009)

@ A. Buzmakov, S. O. Kuznetsov, A.Napoli: Fast Generation of Best Interval
Patterns for Nonmonotonic Constraints. ECML/PKDD (2) 2015: 157-172

1A k.a. primitive-based constraints

@ A.Soulet, B. Crémilleux: Mining constraint-based patterns using automatic
relaxation. Intell. Data Anal. 13(1): 109-133 (2009)



An example

> Ve, w(e) >0

> C(p,w) = avg(w(p)) >0 = % > 0.
C(¢, D) is piecewise monotone and anti-monotone with
w(e
f((pl, @2,’1)) — 266901 ( )
|p2]
Vx <y,
> fi,, is monotone: f(x, s, D) = % >0 = % >0
> £, is anti-monotone:
Decp W(e) Dece W(e)

f((pl,y,D):T>0':>T>0'



Piecewise constraint exploitation

R\/

Evaluation

If F(RV,R", D) = Zecmr 6)

R/\
Propagation
» Je € RV \ R” such that f(RY \ {e},R",D) < o, then e is moved
in R"
» Je € RV \ R”" such that f(RY,R"U{e},D) <o, then e is
removed from RY



Piecewise constraint exploitation

Evaluation
If F(RV, R, D) = Zesr )
then R is empty.

R/\

Propagation
» Je € RV \ R” such that f(RY\ {e}, R",D) < g, then e is moved
in R"
» Je € RV \ R” such that f(RY,R"U{e},D) < o, then e is
removed from RY



Algorithmic principles

Function Generic_CBPM enumeration(RY,R")

1. if Check_constraints(R”",RY) then
(R",RY)+ Constraint_Propagation(R",R")
if R* =RY then
output RN
else
for alle € RV \ R" do
Generic_CBPM_Enumeration(R”" U {e}, RY)
Generic_CBPM Enumeration(R”",RY \ {e})
end for
10:  end if
11: end if

© NSO RN



Tight Upper-bound computation

» Convex measures can be taken into o] o
account by computing some upper
bounds with R and RV. L m
» Branch and bound enumeration R
[4 Shinichi Morishita, Jun Sese: Traversing ¢ //
Itemset Lattice with Statistical Metric &y
. A A
Pruning. PODS 2000: 226-236 Bl
0.0 )-y,0 P

Studying constraints = looking for efficient and effective upper bound in
a branch and bound algorithm !



Case Studies

Mining of

vV V. vV vV YV VYV VY VvV VvVY

Multidimensional and multi-level sequences [ACM TKDD 2010]
Maximal homogeneous clique set [KAIS 2014]

Rules in Boolean tensors/dynamic graphs [SDM 11, IDA J. 2013]
Topological patterns in static attributed graphs [TKDE 2013]
Temporal dependencies in streams [KDD'13, IDA J. 2016]

Trend dynamic sub-graphs [DS 12, PKDD 13, IDA 14]

d-free sequential patterns [[CDM'14]

Triggering patterns [ASONAM 14, Social Network Analysis J. 2015]
Events in geo-localized social medias [ECMLPKDD'15]

Pairwise change behavior [ECMLPKDD'17]

Exceptional attributed Graphs [Machine Learning 2017, ICDM'16,
ComplexNetwork17]



Toward declarativity

Why declarative approaches?

» for each problem, do not write a solution from scratch
Declarative approaches:

» CP approaches (Khiari et al., CP10, Guns et al., TKDE 2013)

» SAT approaches (Boudane et al., [JCAI16, Jabbour et al., CIKM13)

» ILP approaches (Mueller et al, DS10, Babaki et al., CPAIOR14, Ouali et al.
1JCAI16)

» ASP approaches (Gebser et al., IJCAI16)



Thresholding problem

number of patterns

threshold

v

A too stringent threshold: trivial patterns

v

A too weak threshold: too many patterns, unmanageable and
diversity not necessary assured.

v

Some attempts to tackle this issue:

> Interestingness is not a dichotomy! [?]
> Taking benefit from hierarchical relationships [?, ?]

v

But setting thresholds remains an issue in pattern mining.



Constraint-based pattern mining:

concluding remarks

» how to fix thresholds?

» how to handle numerous patterns including non-informative
patterns? how to get a global picture of the set of patterns?

» how to design the proper constraints/preferences?



END
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