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Outside the itemset domain

Th(L,D, C) = {ψ ∈ L | C(ψ,D) is true}

I Pattern domain: (itemset, sequences, graphs, dynamic graphs, etc.)

I Constraints: How to efficiently push them?

Considering more sophisticated pattern domain is more challenging!

I Some anti-monotonic properties do not hold:
I freeness for sequence.
I support within a single graph.

I Some pessimistic results (non derivability outside itemset domain)

But it makes it possible to capture more meaningful patterns.
+ it’s worth it!
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Sequence mining

Key notions

I I = {i1, i2 . . . im} the items.
I I = {a, b, c, d , e}.

I itemset
I (a, b).

I A sequence is an ordered list of itemsets
I 〈(a, b)(b)(a, c)〉.

I the set of all possible sequences I is denoted T(I).

I Relation between sequences:

Inclusion �
I 〈(b)(c)〉 � 〈(a, b)(b)(a, c)〉,
I 〈(c)(a)〉 ⊀ 〈(a, b)(b)(a, c)〉.



Mining Task

Sequence database D: a collection of pairs (SID,T ), SID is an id and T
is a sequence T(I).

SDB D
S1 〈(a)(b)(c)(d)(a)(b)(c)〉
S2 〈(a)(b)(c)(b)(c)(d)(a)(b)(c)(d)〉
S3 〈(a)(b)(b)(c)(d)(b)(c)(c)(d)(b)(c)(d)〉
S4 〈(b)(a)(c)(b)(c)(b)(b)(c)(d)〉
S5 〈(a)(c)(d)(c)(b)(c)(a)〉
S6 〈(a)(c)(d)(a)(b)(c)(a)(b)(c)〉
S7 〈(a)(c)(c)(a)(c)(b)(b)(a)(e)(d)〉
S8 〈(a)(c)(d)(b)(c)(b)(a)(b)(c)〉

Frequency
Support(S ,D) = |{(SID,T ) ∈ D|S � T}|.

Relative Frequency
freqDS = Support(S,D)

|D| .

Sequence Pattern Mining Problem

FSeqs(D, σ) = {S | freqDS ≥ σ}

R. Agrawal and R. Srikant, 1996.
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Main Algorithms

Based on A Priori

I Candidate generation.

I Levelwise or depthfirst
enumeration.

I GSP, SPAM, PSP, SPADE,
etc.

Pattern-Growth

I No candidate generation.

I Depthfirst enumeration.

I Prefixspan.

I Key concept of projected
database

SDB D
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S7 〈(a)(c)(c)(a)(c)(b)(b)(a)(e)(d)()〉
S8 〈(a)(c)(d)(b)(c)(b)(a)(b)(c)()〉

D|〈(a)(b)(d)〉: the suffixes of the first
occurrence of 〈(a)(b)(d)〉 in each data
sequence.
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Itemset: Search Space = A lattice



Sequential patterns: the search space



Antimonotonicity holds

Important property [Agrawal et Srikant, 94]

I If S is not a frequent sequence

I Then none of its super-sequences is frequent

I Ex : 〈hb〉 not frequent then 〈hab〉 〈(ah)b〉 cannot be frequent.



General Approach : generate and test



Candidate generation: 2 types of extension

S-Extension
a novel itemset to the sequence

I 〈(a, b)(c)〉 → 〈(a, b)(c)(d)〉

I-Extension
a novel item into an existing itemset of the sequence.

I 〈(a, b)(c)〉 → 〈(a, b)(c , d)〉



GSP (Agrawal et Srikant): based on Apriori



One scan over the DB to discover the sequences that contain a single
item.



The whole process



Candidate generation of length 2



Candidate support computation

the most costly step

I candidates are stored in central memory.

I limit the disk accesses.

I load the DB if possible.



How to efficiently stored the candidates?

S = 〈(10)(30)(10, 40)〉



PSP (Prefix Tree for SP) [Masseglia et al. 98]

A more efficient structure based on prefix tree.

I 2 types of edges



PSP: generation of 2-candidates



PSP: generation ok k-candidates (k > 2)



Algorithm SPADE

SPADE (Sequential PAttern Discovery using Equivalent Class)
[Zaki 2001]

I vertical representation of data

I DB: set of triples (item, SID,EID)



SPADE: more efficient support computation



Limitation of generate-and-test methods

I An over-generation of candidates:
I For 1000 frequent 1-sequences, 1000× 1000× 1000×999

2
= 1, 499, 500

2 candidates are generated.
I Multiples scans on the whole DB.
I High memory consumption

I Discovery of long sequences is impossible:
I an exponential number of candidates sub-sequences generated
I for a sequence of length 100 : 2100 − 1 ≈ 1030



Approaches ”pattern growth”

I No candidate generation

I extraction of frequent items in projected DB.

I a greedy approach (in a depthfirst enumeration)



Prefix and suffix

I 〈a〉, 〈aa〉 and 〈a(abc)〉 are prefix of 〈a(abc)(ac)d(cf )〉

I Given 〈a(abc)(ac)d(cf )〉
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Prefix and suffix

I 〈a〉, 〈aa〉 and 〈a(abc)〉 are prefix of 〈a(abc)(ac)d(cf )〉
I Given 〈a(abc)(ac)d(cf )〉

I Some particular items : ( b)



Sequential pattern mining with prefix projections

I Step 1 : extraction of frequent 1-sequences:

〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f 〉

I Step 2 : the complete set of frequent sequences can be partitioned
into 6 sub-sets:

I w.r.t. to prefix 〈a〉,
I w.r.t. to prefix 〈b〉,
I w.r.t. to prefix 〈c〉,
I w.r.t. to prefix 〈d〉,
I w.r.t. to prefix 〈e〉,
I w.r.t. to prefix 〈f 〉.



Finding sequences of prefix 〈a〉
Simply consider the projections according to 〈a〉 :

I < (abc)(ac)d(cf ) >,

I < ( d)c(bc)(ae) >,

I < ( b)(df )cb >,

I < ( f )cbc >

2-sequences of prefix 〈a〉 :

I < aa >,

I < ab >,

I < (ab) >,

I < ac >,

I < ad >,

I < af >

new partition into 6 subsets



Completness of PrefixSpan



Efficiency PrefixSpan

I No candidate generation

I The size of projected DB decreases with the enumeration.

I The main cost of PrefixSpan: building the projected DB.
I improved with pseudo projections



Pseudo projection

I If the DB can be load in main memory, use of pointers for the
projections

I Pointers on the sequences

I Offset on the suffix



Closed Sequential Patterns

Definition ?

Motivations

I Redundancy

I Efficiency.

2 approaches:

I CloSpan (Yan et al. 2003)

I Bide (Wang et al. 2007)
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Clospan

Avoid to scan several times the same projected DB
“Using Backward Subpattern and Backward Superpattern pruning to
prune redundant search space”



Algorithm

Limitations of managing a set of closed candidates

I post-processing : O(n2)

Stop the management of candidates



BIDE: Main idea

Extension of g -k-prefix sequence 〈s1, s2, . . . , sg〉 :

1. forward inter itemset S ′ = 〈s1, s2, . . . , sg , {e′}〉
2. forward intra itemset S ′ = 〈s1, s2, . . . sg ∪ {e′}〉
3. backward inter itemset S ′ = 〈s1, s2, . . . , si , {e′}, si+1, . . . , sg 〉
4. backward intra itemset S ′ = 〈s1, s2, . . . si ∪ {e′}, si+1, . . . , sg 〉
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BIDE: Main idea

Extension of g -k-prefix sequence 〈s1, s2, . . . , sg〉 :

1. forward inter itemset S ′ = 〈s1, s2, . . . , sg , {e′}〉
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I If there is no extension that preserve the support of the sequence



Intervals of 〈s1, s2, . . . , sg〉

Exhibit items that occur in all i th intervals
I1︸︷︷︸s1, I2︸︷︷︸, s2, I3︸︷︷︸, s3, . . . , sg−1 Ig︸︷︷︸, sg
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Constraints on sequences

Time constraints

I Window size,

I min gap,

I max gap

H Mannila, H Toivonen, AI Verkamo. Discovery of frequent episodes in event
sequences. Data mining and knowledge discovery 1997.

Ramakrishnan Srikant, Rakesh Agrawal. Mining Sequential Patterns:
Generalizations and Performance Improvements. EDBT 1996.

M. Nanni and C. Rigotti. Extracting Trees of Quantitative Serial Episodes. KDID
2006.

Regular expressions
〈[a ∗ a ∗ bc ∗ a]〉

M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential Pattern Mining

with Regular Expression Constraints. 1999.



Condensed representation

Much less condensed representation

I Closed patterns.

I Free/Generators.

I Non derivable pattern, impossible for data sequences.

Räıssi et al, 2008.

Noise tolerant patterns: δ-free patterns.
More robust w.r.t. noise.

I the freeness is anti-monotone for itemset, not for sequences.

⇒ We have to define some introduce some other pruning properties.

P. Holat, M. Plantevit, C. Räıssi, N. Tomeh, T. Charnois, B. Crémilleux: Sequence

Classification Based on Delta-Free Sequential Patterns. ICDM 2014
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Graph Mining

In a graph collection

I Subgraph isomorphism test:
NP Complete in the general
case

I Canonical code base on
DFS lexicographic order

X. Yan and J. Han. gSpan:

graph-based substructure pattern

mining. ICDM 2003.

In a single graph
The usual definition of support is not
anti-monotone:

B

A B

B

B

B

BB

B

T. Calders, J. Ramon, D. Van Dyck:
Anti-monotonic Overlap-Graph Support Measures.
ICDM 2008.

B. Bringmann, S. Nijssen: What Is Frequent in

a Single Graph?. PAKDD 2008
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Dense subgraph mining

Mining clique: cliqueness is antimonotone ⇒ Just enumerate the nodes
taking advantage of AM property.

What about quasi-clique mining?

Pb1
Let γ ∈]0, 1], C ⊆ V is a
γ-quasi-clique if
∀v ∈ C , deg(v ,G [C ]) ≥ γ(|C | − 1)
where deg(v ,G [C ]) is the degree of
v in G [C ]

Guimei Liu, Limsoon Wong: Effective

Pruning Techniques for Mining

Quasi-Cliques. ECML/PKDD 2008

Pb2
Let γ ∈]0, 1], C ⊆ V is a

pseudo-clique if 2×|E [C ]|
|C |×(|C |−1) ≥ γ.

Takeaki Uno: An Efficient Algorithm

for Solving Pseudo Clique Enumeration

Problem. Algorithmica 2010

Question: Which Pb is the most difficult? Why?
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Quasi-Cliques. ECML/PKDD 2008

Pb2
Let γ ∈]0, 1], C ⊆ V is a

pseudo-clique if 2×|E [C ]|
|C |×(|C |−1) ≥ γ.

Takeaki Uno: An Efficient Algorithm

for Solving Pseudo Clique Enumeration

Problem. Algorithmica 2010

Question: Which Pb is the most difficult? Why?



From Data to Augmented Graphs

I Graphs are often dynamic with attributes related to vertices
and/or edges.



Mining Augmented Graphs

Analyzing large augmented graphs leads to many challenges:
I Working with network data is messy

I Not just “wiring diagrams” but also dynamics and data (features,
attributes) on nodes and edges

I Computational issues

I Expressivity et genericity: to answer to questions from
I Social sciences, Physics, Biology, Neurosciences, etc.

� How network structure and node attribute values relate and
influence each other?

Constraint-based pattern mining and the IDB framework

Th(L,D, C) = {ϕ ∈ L | C(ϕ,D) is true }

I L : multiples pattern domains are possible

I D : one or several graphs

I C : (quasi)-clique, homogeneity, diameter, etc.
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Boolean Attributed-Node Graph

I Attribute + Structure → Mining homogeneous dense subgraphs.

F. Moser, R. Colak, A. Rafiey, M. Ester: Mining Cohesive Patterns from

Graphs with Feature Vectors. SDM 2009

I Attribute + Structure → Mining homogeneous collections of dense
subgraphs.

P-N Mougel, C. Rigotti, M. Plantevit, O. Gandrillon: Finding maximal

homogeneous clique sets. Knowl. Inf. Syst. 39(3), 2014

P-N Mougel, C. Rigotti, O. Gandrillon Finding Collections of k-Clique

Percolated Components in Attributed Graphs. PAKDD 2012

I Structural Correlation Pattern Mining:
I Structural correlation: Probability of a vertex that has an attribute

set S to be part of a correlated dense subgraph Q
I Structural correlation pattern (S ,Q): Correlated dense subgraph Q

wrt S .
A. Silva, W. Meira Jr., M. J. Zaki: Mining Attribute-structure Correlated

Patterns in Large Attributed Graphs. PVLDB (2012)
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Numeric Attributed-Node Graph: Topological Patterns

What are the node attributes that strongly co-vary with the graph
structure

I P = {PVLDB+,Betw+} (Gr(P,E ) ' 7)

I Kendall’s Tau Generalization:

Suppτ (P) =
|{(u, v) ∈ V 2 | ∀As ∈ P : A(u) Bs A(v)}|(

|V |
2

)
if s = +, Bs is <, otherwise >.

I Computing Suppτ : O(|V |2)
I Computing a tight upper bound: O(|V |)
I Index structure

A. Prado, M. Plantevit, C. Robardet, J-F. Boulicaut: Mining Graph Topological

Patterns: Finding Covariations among Vertex Descriptors. IEEE Trans. Knowl. Data

Eng. 25(9): 2090-2104 (2013)



Topological Patterns (2/2)

I For a centrality measure, what are the most impacting conferences?

Rank Deg+ Between+

Publication Factor Publication Factor

1 ECML/PKDD+ 2.5 PVLDB+ 5.67

2 IEEE TKDE+ 2.28 EDBT+ 5.11

3 PAKDD+ 2.21 VLDB J.+ 4.35

4 DASFAA+ 2.09 SIGMOD+ 4.25

5 ICDM+ 1.95 ICDE+ 3.42

I What are the most representative authors?
Prk+ Deg+ECML/PKDD+ Prk+ Between+PVLDB+

Christos Faloutsos Gerhard Weikum

Jiawei Han Jiawei Han

Philip S. Yu David Maier

Bing Liu Philip S. Yu

C. Lee Giles Hector Garcia-Molina



Dynamic Attributed Graphs

A dynamic attributed graph G = (V, T ,A) is a sequence over T of
attributed graphs Gt = (V,Et ,At), where:

I V is a set of vertices that is fixed throughout the time,

I Et ∈ V × V is a set of edges at time t,

I At is a vector of numerical values for the attributes of A that
depends on t.

Example

v1

v2

v3

v4

v5

a1 a2 a3

↑ → ↑

a1 a2 a3

↓ ↓ ↑

a1 a2 a3

→ ↑ ↓

a1 a2 a3

↓ → ↑

a1 a2 a3

↑ ↓ →

t1

v1

v2

v3

v4

v5

a1 a2 a3

↓ ↓ ↓

a1 a2 a3

↑ ↓ ↓

a1 a2 a3

↑ ↓ ↓

a1 a2 a3

→ ↓ ↑

a1 a2 a3

↓ ↓ ↓

t2



Co-evolution Pattern

Given G = (V, T ,A), a co-evolution pattern is a triplet
P = (V ,T ,Ω) s.t.:

I V ⊆ V is a subset of the vertices of the graph.

I T ⊂ T is a subset of not necessarily consecutive timestamps.

I Ω is a set of signed attributes, i.e., Ω ⊆ A× S with A ⊆ A and
S = {+,−} meaning respectively a {increasing , decreasing} trend.



Predicates

A co-evolution pattern must satisfy two types of constraints:

Constraint on the evolution:

I Makes sure attribute values
co-evolve

* δ-strictEvol.

I ∀v ∈ V , ∀t ∈ T and ∀as ∈
Ω then δ-trend(v , t, a) = s

Constraint on the graph
structure:

I Makes sure vertices are related
through the graph structure.

* diameter.

I ∆-diameter
(
V ,T ,Ω

)
=

true ⇔ ∀t ∈ T diamGt(V ) ≤ ∆
respects diameter()

v1

v2

v3

v4

v5

d = 1

v1

v2

v3

v4

v5

d = 2 . . .

v1

v2

v3

v4

v5

d = 4

v1

v2

v3

v4

v5

d =∞

clique . . . . . . connected component non connected



Example

P = {(v1, v2, v3)(t1, t2)(a−2 , a
+
3 )}

v1

v2

v3

v4

v5

a1 a2 a3

↑ ↓ ↑

a1 a2 a3

↓ ↓ ↑

a1 a2 a3

→ ↓ ↑

a1 a2 a3

↓ → ↑

a1 a2 a3

↑ ↓ →

t1

v1

v2

v3

v4

v5

a1 a2 a3

↓ ↓ ↑

a1 a2 a3

↑ ↓ ↑

a1 a2 a3

→ ↓ ↑

a1 a2 a3

→ ↓ ↑

a1 a2 a3

↓ ↓ ↓

t2

I 1-Diameter(P) is true,

I 0-strictEvol(P) is true.



Density Measures

Intuition
Discard patterns that depict a behaviour supported by many other
elements of the graph.
* vertex specificity, temporal dynamic and trend relevancy.



Algorithm

How to use the properties of the constraints to reduce the search space?

I Binary enumeration of the search
space.

I Using the properties of the constraints
to reduce the search space

I Monotone, anti-monotone, piecewise
(anti-)monotone, etc.

I Constraints are fully or partially
pushed:

I to prune the search space (i.e., stop
the enumeration of a node),

I to propagate among the candidates.

Cerf et al, ACM TKDD 2009

�This algorithms aim to be complete but other heuristic search can be
used in a straightforward way (e.g., beam-search) to be more scalable



Top temporal dynamic trend
dynamic sub-graph (in red)

I 71 airports whose arrival delays
increase over 3 weeks.

I temporal dynamic = 0, which
means that arrival delays never
increased in these airports
during another week.

I The hurricane strongly
influenced the domestic flight
organization.

Top trend relevancy (Yellow)

I 5 airports whose number of
departures and arrivals
increased over the three weeks
following Katrina hurricane.

I trend relevancy value equal to
0.81

I Substitutions flights were
provided from these airports
during this period.

I This behavior is rather rare in
the rest of the graph

|V | |T | |A| density
Katrina 280 8 8 5× 10−2



Brazil landslides

Discovering lanslides

I Taking into account expert
knowledge, focus on the pat-
terns that involve NDVI+.

I Regions involved in the
patterns: true landslides (red)
and other phenomena (white).

I Compare to previous work,
much less patterns to
characterize the same
phenomena (4821 patterns vs
millions).

|V | |T | |A| density
Brazil landslide 10521 2 9 0.00057



Overview

v1

v2

v3

v4

v5

a1 a2 a3

2 5 3

a1 a2 a3

6 7 1

a1 a2 a3

2 3 9

a1 a2 a3

8 8 2

a1 a2 a3

2 7 6

t1

v1

v2

v3

v4

v5

a1 a2 a3

6 5 4

a1 a2 a3

3 8 9

a1 a2 a3

2 6 6

a1 a2 a3

3 5 1

a1 a2 a3

3 6 9

t2

v1

v2

v3

v4

v5

a1 a2 a3

2 2 2

a1 a2 a3

5 4 6

a1 a2 a3

9 2 5

a1 a2 a3

3 4 7

a1 a2 a3

2 5 5

t3

Co-evolution patterns

Interestingness Measures

(Desmier et al., ECML/PKDD 2013)

Experimental results
DBLP US flights Brazil landslides

I Some obvious patterns are
discarded ...

I ... but some patterns need
to be generalized

Desmier et al, IDA 2014

Hier. co-evolution patterns
Take benefits from a hierarchy over the
vertex attributes to :

I return a more concise collection
of patterns;

I discover new hidden patterns;

All

A

a1 a2

a3
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Issue

�We need to mine contextualized trajectories.

I What about the data?
Contexts X

Trajectories only 2 points

I How to have a good view of the demographic flows with only
2-point-trajectories?

Our idea:
�Taking benefit from the crowd with an attributed graph based
approach.

I Individual trajectories are aggregated into weighted graphs;

I We look for exceptional sub-graph



Example: The Velo’v network1

I 348 Velov stations across the city of Lyon.

I The dataset contains movement data collected in a 2 year period
(Jan. 2011– Dec. 2012)

I Each movement (edge) includes both bicycle stations (vertices) and
timestamps for departure and arrival, as well as some basic
demographics about the user of the bike (context).

I Customers described by nominal attributes (gender, type of
membership card, ZIP code and country of residence) and a
numerical one (year of birth).

I 50, 601 customers.

I 2, 000, 000 contextualized edges in total.

1http://www.velov.grandlyon.com/



Examples of Demographic and contextualized Specific
Routes

YoB ≥ 1968,ZIP = 42400

I identifies people born after 1968, living
in a city (Saint Chamond) located
approximately 50km from Lyon.

I the edges involve the two main train
stations of Lyon: Perrache
(south-west) and Part-Dieu (center),
from which users take bicycles to areas
that are not easily reached by metro or

tram, such as the 1st and 4th districts.

YoB ≥ 1962,CAT = OURA



Pb Formalization: Key concepts

A context aims to characterize a subset of movements/trajectories.

Aggregate graph GC

I Given a context C , GC is a weighted graph involving all edges that
satisfy C .

I The weight of an edge is the number of movements involving the
two vertices that hold for C .

Operations on GC

Differential comparison with G∗:

I Adequacy of an edge to a context assessed by a χ2 test.

I Some quality measures to “quantify” the attraction of the edges for
a context: q(e,C ).



Example

Contexts Trajectories
User Gender Age Time Travels
u1 F 20 Day (A,C), (B,A), (C,B)

u1 F 20 Night
(D,C),(D,E),(E,A),
(E,D)

u2 M 23 Day
(A,B),(B,C),(C,A),
(C,B)

u2 M 23 Night
(A,B),(B,C),(C,B)
(C,D),(D,C),(D,E),
(E,D)

u3 F 45 Day
(A,B),(B,C),(C,D),
(D,A),(D,E),(E,D)

u3 F 45 Night (B,D),(D,B)

u4 M 50 Day
(A,B),(B,C),(C,B),
(C,D),(D,A),(D,E),
(E,D)

u4 M 50 Night (A,C),(C,A)

A

B C

D

E

4
1

1
2 3

2

4
4

4
4

1

22

1

G?



Example

Contexts Trajectories
User Gender Age Time Travels
u1 F 20 Day (A,C), (B,A), (C,B)

u1 F 20 Night
(D,C),(D,E),(E,A),
(E,D)

u2 M 23 Day
(A,B),(B,C),(C,A),
(C,B)

u2 M 23 Night
(A,B),(B,C),(C,B)
(C,D),(D,C),(D,E),
(E,D)

u3 F 45 Day
(A,B),(B,C),(C,D),
(D,A),(D,E),(E,D)

u3 F 45 Night (B,D),(D,B)

u4 M 50 Day
(A,B),(B,C),(C,B),
(C,D),(D,A),(D,E),
(E,D)

u4 M 50 Night (A,C),(C,A)

A

B C

D

E

2 2

2

2

2
2

1

C= (Gender = ?,Age ∈ [45, 50],Time = Day)



Demographic and Contextualized Specific Route pattern
A pair (C, G’) where

I C is a context

I G ′ is a subgraph of GC such that:
I ∀e ∈ G ′, e fulfils the χ2 test and q(e,C) > 0,
I G ′ is connected.



The Mining Task

I No threshold to avoid related issues.

I �Some measures to be maximized by the patterns:
I density of G ′, #edges, #vertices, several aggregations of the quality

measure.

Mining Task:
Given a set of measures (user-preferences) M, our goal is to compute the
Pareto-front of the Demographic and Contextualized Specific Route
patterns according to M.



Algorithm in a nutshell

I Enumeration of the possible contexts in a depth-first fashion.

I Several upper-bounds to early prune unpromising candidates:
I on the χ2 for each edge (see Sese and Morishita, PKDD’04)
I on the other measures;



XP

(i)YoB ≥ 1962,CAT = OURA (ii) YoB ≥ 1980,TYP = standard (iii) YoB ≥ 1992,ZIP = 69003

i The edges of pattern (i) radiate from all of Lyon’s train stations, not
only the major ones. Its description refers to holders of a regional
train subscription (monthly or yearly).

ii It involves users born in or after 1980:
I 3 main areas: the scientific campus in the north, the Presqu’̂ıle and

its pubs, and the shopping area in the center of Lyon.

iii Young people that live in the 3rd district use bicycles to move
around in their area.

I ground truth in real-world data: the ZIP code of users aligns with
the area where the bicycles are used!



Some other inductive queries for augmented graphs

I What are the node attributes that strongly co-vary with
the graph structure?

I Co-authors that published at ICDE with a high degree
and a low clustering coefficient.

Prado et al., IEEE TKDE 2013

I Which are the node attribute temporal combination
that impact the graph structure ?

I dynamic attributed graph

M. Kaytoue et al. Social Netw. Analys. Mining (2015)

I For a given population, what is the most related
subgraphs (i.e., behavior)? For a given subgraph, which
is the most related subpopulation?

I edge-attributed graph
I People born after 1979 are over represented on the

campus.



Outline

Toward More Sophisticated Pattern Domains

Sequences

Graphs

Conclusion



Conclusion

Th(L,D, C) = {ψ ∈ L | C(ψ,D) is true}

I Pattern domains: (itemset, sequences, graphs, dynamic graphs, etc.)

I Constraints: How to efficiently push them?

Research Avenues

I Still new pattern domains and and their related primitives have to be
defined.

I Accept to lose the completeness in some cases (next course).

I Integration of domain knowledge.

I Interactivity: replace the user in the center of the KDD process.
I User preference learning
I Inductive query recommendation

I Describing a phenomena with the simplest pattern language!



Thanks

End


