Other pattern domains and their primitives

Marc Plantevit

Université Claude Bernard Lyon 1 - LIRIS CNRS UMR5205

ENS Lyon, April 2018

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Toward More Sophisticated Pattern Domains

Sequences

Graphs

Conclusion

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Outside the itemset domain

$$Th(\mathcal{L}, \mathcal{D}, \mathcal{C}) = \{\psi \in \mathcal{L} \mid \mathcal{C}(\psi, \mathcal{D}) \text{ is true} \}$$

Pattern domain: (itemset, sequences, graphs, dynamic graphs, etc.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Constraints: How to efficiently push them?

Outside the itemset domain

 $Th(\mathcal{L}, \mathcal{D}, \mathcal{C}) = \{\psi \in \mathcal{L} \mid \mathcal{C}(\psi, \mathcal{D}) \text{ is true} \}$

- Pattern domain: (itemset, sequences, graphs, dynamic graphs, etc.)
- Constraints: How to efficiently push them?

Considering more sophisticated pattern domain is more challenging!

- Some anti-monotonic properties do not hold:
 - freeness for sequence.
 - support within a single graph.
- Some pessimistic results (non derivability outside itemset domain)

Outside the itemset domain

 $Th(\mathcal{L}, \mathcal{D}, \mathcal{C}) = \{\psi \in \mathcal{L} \mid \mathcal{C}(\psi, \mathcal{D}) \text{ is true} \}$

- Pattern domain: (itemset, sequences, graphs, dynamic graphs, etc.)
- Constraints: How to efficiently push them?

Considering more sophisticated pattern domain is more challenging!

- Some anti-monotonic properties do not hold:
 - freeness for sequence.
 - support within a single graph.
- Some pessimistic results (non derivability outside itemset domain)

But it makes it possible to capture more meaningful patterns. $\[mathbb{m}\]$ it's worth it!

Toward More Sophisticated Pattern Domains

Sequences

Graphs

Conclusion

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Sequence mining

Key notions

- $\mathcal{I} = \{i_1, i_2 \dots i_m\}$ the items.
 - $\mathcal{I} = \{a, b, c, d, e\}.$
- itemset
 - ► (a, b).
- A sequence is an ordered list of itemsets
 - $\langle (a,b)(b)(a,c) \rangle.$
- the set of all possible sequences \mathcal{I} is denoted $\mathbb{T}(\mathcal{I})$.
- Relation between sequences:

Inclusion \preceq

- $\langle (b)(c) \rangle \preceq \langle (a,b)(b)(a,c) \rangle$,
- $\langle (c)(a) \rangle \not\prec \langle (a,b)(b)(a,c) \rangle$.

Sequence database \mathcal{D} : a collection of pairs (*SID*, *T*), *SID* is an id and *T* is a sequence $\mathbb{T}(\mathcal{I})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

SD	$B \mathcal{D}$
S_1	$\langle (a)(b)(c)(d)(a)(b)(c) \rangle$
S_2	$\langle (a)(b)(c)(b)(c)(d)(a)(b)(c)(d) \rangle$
<i>S</i> ₃	$\langle (a)(b)(c)(d)(b)(c)(c)(d)(b)(c)(d) \rangle$
<i>S</i> ₄	$\langle (b)(a)(c)(b)(c)(b)(c)(d) \rangle$
S_5	$\langle (a)(c)(d)(c)(b)(c)(a) \rangle$
S_6	$\langle (a)(c)(d)(a)(b)(c)(a)(b)(c) \rangle$
S ₇	$\langle (a)(c)(c)(a)(c)(b)(b)(a)(e)(d) \rangle$
<i>S</i> ₈	$\langle (a)(c)(d)(b)(c)(b)(a)(b)(c) \rangle$

R. Agrawal and R. Srikant, 1996.

Sequence database \mathcal{D} : a collection of pairs (*SID*, *T*), *SID* is an id and *T* is a sequence $\mathbb{T}(\mathcal{I})$.

SD	B ${\cal D}$
S_1	$\langle (a)(b)(c)(d)(a)(b)(c) \rangle$
S_2	$\langle (a)(b)(c)(b)(c)(d)(a)(b)(c)(d) \rangle$
S_3	$\langle (a)(b)(c)(d)(b)(c)(c)(d)(b)(c)(d) \rangle$
<i>S</i> ₄	$\langle (b)(a)(c)(b)(c)(b)(c)(d) \rangle$
S_5	$\langle (a)(c)(d)(c)(b)(c)(a) \rangle$
S_6	$\langle (a)(c)(d)(a)(b)(c)(a)(b)(c) \rangle$
S ₇	$\langle (a)(c)(c)(a)(c)(b)(b)(a)(e)(d) \rangle$
<i>S</i> ₈	$\langle (a)(c)(d)(b)(c)(b)(a)(b)(c) \rangle$

Frequency Support(S, D) = |{(SID, T) $\in D$ | $S \leq T$ }|.

Sequence database \mathcal{D} : a collection of pairs (*SID*, *T*), *SID* is an id and *T* is a sequence $\mathbb{T}(\mathcal{I})$.

SD	$B \mathcal{D}$
S_1	$\langle (a)(b)(c)(d)(a)(b)(c) \rangle$
S_2	$\langle (a)(b)(c)(b)(c)(d)(a)(b)(c)(d) \rangle$
S_3	$\langle (a)(b)(c)(d)(b)(c)(c)(d)(b)(c)(d) \rangle$
<i>S</i> ₄	$\langle (b)(a)(c)(b)(c)(b)(c)(d) \rangle$
S_5	$\langle (a)(c)(d)(c)(b)(c)(a) \rangle$
S_6	$\langle (a)(c)(d)(a)(b)(c)(a)(b)(c) \rangle$
S ₇	$\langle (a)(c)(c)(a)(c)(b)(b)(a)(e)(d) \rangle$
<i>S</i> ₈	$\langle (a)(c)(d)(b)(c)(b)(a)(b)(c) \rangle$

Frequency

 $Support(S, D) = |\{(SID, T) \in D | S \leq T\}|.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relative Frequency $freq_{S}^{\mathcal{D}} = \frac{Support(S,\mathcal{D})}{|\mathcal{D}|}.$

R. Agrawal and R. Srikant, 1996.

Sequence database \mathcal{D} : a collection of pairs (*SID*, *T*), *SID* is an id and *T* is a sequence $\mathbb{T}(\mathcal{I})$.

Frequency

 $Support(S, D) = |\{(SID, T) \in D | S \preceq T\}|.$

Relative Frequency $freq_{S}^{\mathcal{D}} = \frac{Support(S,\mathcal{D})}{|\mathcal{D}|}.$

Sequence Pattern Mining Problem

$$FSeqs(\mathcal{D}, \sigma) = \{S \mid freq_S^{\mathcal{D}} \geq \sigma\}$$

R. Agrawal and R. Srikant, 1996.

Main Algorithms

Based on A Priori

- Candidate generation.
- Levelwise or depthfirst enumeration.
- GSP, SPAM, PSP, SPADE, etc.

Pattern-Growth

- No candidate generation.
- Depthfirst enumeration.
- Prefixspan.
- Key concept of projected database

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Main Algorithms

Based on A Priori

- Candidate generation.
- Levelwise or depthfirst enumeration.
- GSP, SPAM, PSP, SPADE, etc.

SD	3 D
S_1	$\langle (a)(b)(c)(d)(a)(b)(c) \rangle$
<i>S</i> ₂	$\langle (a)(b)(c)(b)(c)(d)(a)(b)(c)(d) \rangle$
<i>S</i> ₃	$\langle (a)(b)(c)(d)(b)(c)(c)(d)(b)(c)(d) \rangle$
<i>S</i> ₄	$\langle (b)(a)(c)(b)(c)(b)(c)(d)() \rangle$
S ₅	$\langle (a)(c)(d)(c)(b)(c)(a)() \rangle$
S ₆	$\langle (a)(c)(d)(a)(b)(c)(a)(b)(c)() \rangle$
S ₇	$\langle (a)(c)(c)(a)(c)(b)(b)(a)(e)(d)() \rangle$
<i>S</i> ₈	$\langle (a)(c)(d)(b)(c)(b)(a)(b)(c)() \rangle$

Pattern-Growth

- No candidate generation.
- Depthfirst enumeration.
- Prefixspan.
- Key concept of projected database

 $\mathcal{D}_{|\langle (a)(b)(d) \rangle}$: the suffixes of the first occurrence of $\langle (a)(b)(d) \rangle$ in each data sequence.

・ロ・・西・・田・・田・ 日・ シュウ

Itemset: Search Space = A lattice

◆□> ◆□> ◆注> ◆注> □注□

Sequential patterns: the search space

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Antimonotonicity holds

Important property [Agrawal et Srikant, 94]

- If S is not a frequent sequence
- Then none of its super-sequences is frequent
- Ex : $\langle hb \rangle$ not frequent then $\langle hab \rangle \langle (ah)b \rangle$ cannot be frequent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Seq. ID	Séquence	
10	<(bd)cb(ac)>	
20	<(bf)(ce)b(fg)>	mingunn -2
30	<(ah)(bf)abf>	minsupp $=2$
40	<(be)(ce)d>	
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>	

General Approach : generate and test

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Candidate generation: 2 types of extension

S-Extension

a novel itemset to the sequence

•
$$\langle (a,b)(c) \rangle \rightarrow \langle (a,b)(c)(d) \rangle$$

I-Extension

a novel item into an existing itemset of the sequence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\blacktriangleright \langle (a,b)(c) \rangle \rightarrow \langle (a,b)(c,d) \rangle$$

GSP (Agrawal et Srikant): based on Apriori

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

One scan over the DB to discover the sequences that contain a single item.

		Cand	Sup
		<a>	3
Seq. ID	Sequence		5
10	<(bd)cb(ac)>	<c></c>	4
20	<(bf)(ce)b(fg)>	<d></d>	3
20	<(0h)(hf)0hf>	<e></e>	3
50		<f></f>	2
40	<(be)(ce)d>	×g×	1
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>	Ah	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The whole process

5th scan : 1 candidate 1 length-5 seq pattern

4th scan : 8 candidates 6 length-4 seq pat

3rd scan : 46 candidates 19 length-3 seq pat.

2nd scan : 51 candidates 19 length-2 seq pat.

1st scan : 8 candidates 6 length-1 seq pattern <(bd)cba>

<abba> <(bd)bc> ...

<abb> <aab> <aba> <hab> ...

<aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)>

<a> <c> <d> <e> <f> <g> <h>

イロト 不得 トイヨト イヨト

э

Candidate generation of length 2

 $< f_{2}$

	S-Extension						<a>		<c></c>	<d></d>	<e></e>	<f></f>
						<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
							<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
	5	12-	Cand	idates	5	<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
						<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
					<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>	
I	I-Extension			<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>		
	<a> <c> <d><</d></c>			d>	<e></e>	<f></f>	With	out the	e			
	<a>		<(ab)>	<(ac)>	<(a	ıd)>	<(ae)>	<(af)>	antin	nonoto	nic pr	onerty
				<(bc)>	<(b	od)>	<(be)>	<(bf)>	8*8	8*7/2	-02	operty
	<c></c>				<(0	:d)>	<(ce)>	<(cf)>		-0 //2	-92	
	<d></d>						<(de)>	<(df)>		idates		
	<e></e>							<(ef)>	1			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Candidate support computation

the most costly step

candidates are stored in central memory.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- limit the disk accesses.
- Ioad the DB if possible.

How to efficiently stored the candidates?

◆□> ◆□> ◆豆> ◆豆> □豆

 $S = \langle (10)(30)(10,40) \rangle$

PSP (Prefix Tree for SP) [Masseglia et al. 98]

A more efficient structure based on prefix tree.

2 types of edges

イロト イポト イヨト イヨト

э

PSP: generation of 2-candidates

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

PSP: generation ok k-candidates (k > 2)

(日)、

э

SPADE (Sequential PAttern Discovery using Equivalent Class) [Zaki 2001]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- vertical representation of data
- DB: set of triples (item, SID,EID)

SPADE: more efficient support computation

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2	2	с
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	с
3	5	b
4	1	е
4	2	g
4	3	af
4	4	с
4	5	b
4	6	с

	a	1		
SID	EID	SID	EID	
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

	ab			ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	
1	1	2	1	2	3	
2	1	3	2	3	4	
3	2	5				
4	3	5				

イロト 不得 トイヨト イヨト

æ

	1	aba		
SID	EID (a)	EID(b)	EID(a)	••••
1	1	2	3	
2	1	3	4	

Limitation of generate-and-test methods

- An over-generation of candidates:
 - ► For 1000 frequent 1-sequences, $1000 \times 1000 \times \frac{1000 \times 999}{2} = 1,499,500$ 2 candidates are generated.

- Multiples scans on the whole DB.
- High memory consumption
- Discovery of long sequences is impossible:
 - an exponential number of candidates sub-sequences generated
 - \blacktriangleright for a sequence of length 100 : $2^{100}-1\approx 10^{30}$

Approaches "pattern growth"

- No candidate generation
- extraction of frequent items in projected DB.
- a greedy approach (in a depthfirst enumeration)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Prefix and suffix

• $\langle a \rangle$, $\langle aa \rangle$ and $\langle a(abc) \rangle$ are **prefix** of $\langle a(abc)(ac)d(cf) \rangle$

Prefix and suffix

• $\langle a \rangle$, $\langle aa \rangle$ and $\langle a(abc) \rangle$ are **prefix** of $\langle a(abc)(ac)d(cf) \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ Given ⟨a(abc)(ac)d(cf)⟩

Prefix and suffix

- $\langle a \rangle$, $\langle aa \rangle$ and $\langle a(abc) \rangle$ are **prefix** of $\langle a(abc)(ac)d(cf) \rangle$
- ▶ Given ⟨a(abc)(ac)d(cf)⟩

Préfixe	Suffixe (Prefix-Based Projection)
<a>	<(abc)(ac)d(cf)>
< <u>aa</u> >	<(_bc)(ac)d(cf)>
<ab></ab>	<(_c)(ac)d(cf)>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Some particular items : (_b)

Sequential pattern mining with prefix projections

Step 1 : extraction of frequent 1-sequences:

$$\langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle, \langle e \rangle, \langle f \rangle$$

- Step 2 : the complete set of frequent sequences can be partitioned into 6 sub-sets:
 - w.r.t. to prefix (a),
 - w.r.t. to prefix (b),
 - w.r.t. to prefix $\langle c \rangle$,
 - ▶ w.r.t. to prefix ⟨d⟩,
 - w.r.t. to prefix $\langle e \rangle$,
 - w.r.t. to prefix $\langle f \rangle$.

Finding sequences of prefix $\langle a \rangle$

Simply consider the projections according to $\langle a \rangle$:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- < (abc)(ac)d(cf) >,
- < (_d)c(bc)(ae) >,
- \blacktriangleright < (_b)(df)cb >,
- < (_f)cbc >

2-sequences of prefix $\langle a \rangle$:

- ► < aa >,
- ► < ab >,
- ► < (ab) >,
- ▶ < ac >,
- ► < ad >,
- ▶ < af >

new partition into 6 subsets
Completness of PrefixSpan

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Efficiency PrefixSpan

- No candidate generation
- ► The size of projected DB decreases with the enumeration.
- The main cost of PrefixSpan: building the projected DB.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

improved with pseudo projections

Pseudo projection

- If the DB can be load in main memory, use of pointers for the projections
- Pointers on the sequences
- Offset on the suffix

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Closed Sequential Patterns

Definition ?

▲ロト ▲圖 ▶ ▲臣 ▶ ▲臣 ▶ ●臣 ● のへで

Closed Sequential Patterns

Definition ?

Motivations

Redundancy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► Efficiency.

Closed Sequential Patterns

Definition ?

Motivations

- Redundancy
- Efficiency.

2 approaches:

CloSpan (Yan et al. 2003)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bide (Wang et al. 2007)

Clospan

Avoid to scan several times the same projected DB

"Using Backward Subpattern and Backward Superpattern pruning to prune redundant search space"

イロト イ押ト イヨト イヨト

Algorithm

Limitations of managing a set of closed candidates

• post-processing : $O(n^2)$

Stop the management of candidates

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. forward inter itemset $S' = \langle s_1, s_2, \dots, s_g, \{e'\}
angle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. forward inter itemset $S' = \langle s_1, s_2, \dots, s_g, \{e'\}
 angle$
- 2. forward intra itemset $S' = \langle s_1, s_2, \dots s_g \cup \{e'\} \rangle$

- 1. forward inter itemset $\mathcal{S}' = \langle s_1, s_2, \dots, s_g, \{ e' \}
 angle$
- 2. forward intra itemset $S' = \langle s_1, s_2, \dots s_g \cup \{e'\} \rangle$
- 3. backward inter itemset $S' = \langle s_1, s_2, \dots, s_i, \{e'\}, s_{i+1}, \dots, s_g \rangle$

- 1. forward inter itemset $S' = \langle s_1, s_2, \dots, s_g, \{e'\}
 angle$
- 2. forward intra itemset $S' = \langle s_1, s_2, \dots s_g \cup \{e'\}
 angle$
- 3. backward inter itemset $S' = \langle s_1, s_2, \dots, s_i, \{e'\}, s_{i+1}, \dots, s_g \rangle$
- 4. backward intra itemset $S' = \langle s_1, s_2, \dots s_i \cup \{e'\}, s_{i+1}, \dots, s_g
 angle$

BIDE: Main idea

Extension of *g*-*k*-prefix sequence $\langle s_1, s_2, \ldots, s_g \rangle$:

- 1. forward inter itemset $\mathcal{S}' = \langle s_1, s_2, \dots, s_g, \{ e' \}
 angle$
- 2. forward intra itemset $S' = \langle s_1, s_2, \dots s_g \cup \{e'\} \rangle$
- 3. backward inter itemset $S' = \langle s_1, s_2, \dots, s_i, \{e'\}, s_{i+1}, \dots, s_g \rangle$
- 4. backward intra itemset $S' = \langle s_1, s_2, \dots s_i \cup \{e'\}, s_{i+1}, \dots, s_g \rangle$

Closed sequence:

▶ If there is no extension that preserve the support of the sequence

Exhibit items that occur in all i^{th} intervals $l_1 s_1, l_2, s_2, l_3, s_3, \dots, s_{g-1} l_g, s_g$

Exhibit items that occur in all i^{th} intervals $l_1 s_1, l_2, s_2, l_3, s_3, \dots, s_{g-1} l_g, s_g$

Potentially several occurrences of a sequence within a data sequence

- ▶ Sequence ⟨(a, b)(a, c)⟩
- ▶ Data Sequence ⟨(a, b)(a, c)(a, b)(a, c)(a, b)(a, c)(a, b)(a, c)⟩

Exhibit items that occur in all i^{th} intervals $l_1 s_1, l_2, s_2, l_3, s_3, \dots, s_{g-1} l_g, s_g$

Potentially several occurrences of a sequence within a data sequence

- ▶ Sequence ⟨(a, b)(a, c)⟩
- ▶ Data Sequence ⟨(a, b)(a, c)(a, b)(a, c)(a, b)(a, c)(a, b)(a, c)⟩

Maximize these intervals

Exhibit items that occur in all i^{th} intervals $l_1 s_1, l_2, s_2, l_3, s_3, \dots, s_{g-1} l_g, s_g$

Potentially several occurrences of a sequence within a data sequence

▶ Sequence ⟨(a, b)(a, c)⟩

▶ Data Sequence ⟨(a, b)(a, c)(a, b)(a, c)(a, b)(a, c)(a, b)(a, c)⟩

Maximize these intervals $I_1 : \langle (a, b)(a, c) \rangle$

 $\langle (a,b)(a,c)(a,b)(a,c)(a,b)(a,c)(a,b)(a,c) \rangle$

Exhibit items that occur in all i^{th} intervals $l_1 s_1, l_2, s_2, l_3, s_3, \dots, s_{g-1} l_g, s_g$

Potentially several occurrences of a sequence within a data sequence

▶ Sequence ⟨(a, b)(a, c)⟩

▶ Data Sequence ⟨(a, b)(a, c)(a, b)(a, c)(a, b)(a, c)(a, b)(a, c)⟩

Maximize these intervals $I_2: \langle (a, b)(a, c) \rangle$

 $\langle (a,b)(a,c)(a,b)(a,c)(a,b)(a,c)(a,b)(a,c) \rangle$

Constraints on sequences

Time constraints

- Window size,
- min gap,
- max gap

H Mannila, H Toivonen, Al Verkamo. Discovery of frequent episodes in event sequences. Data mining and knowledge discovery 1997.

Ramakrishnan Srikant, Rakesh Agrawal. Mining Sequential Patterns: Generalizations and Performance Improvements. EDBT 1996.

M. Nanni and C. Rigotti. Extracting Trees of Quantitative Serial Episodes. KDID 2006.

Regular expressions

 $\langle [a * a * bc * a] \rangle$

M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. 1999.

Condensed representation

Much less condensed representation

- Closed patterns.
- ► Free/Generators.
- Non derivable pattern, impossible for data sequences.
 Raïssi et al, 2008.

Noise tolerant patterns: δ -free patterns.

More robust w.r.t. noise.

- ▶ the freeness is anti-monotone for itemset, not for sequences.
- \Rightarrow We have to define some introduce some other pruning properties.

P. Holat, M. Plantevit, C. Raïssi, N. Tomeh, T. Charnois, B. Crémilleux: Sequence Classification Based on Delta-Free Sequential Patterns. ICDM 2014

Toward More Sophisticated Pattern Domains

Sequences

Graphs

Conclusion

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Graph Mining

In a graph collection

- Subgraph isomorphism test: NP Complete in the general case
- Canonical code base on DFS lexicographic order

X. Yan and J. Han. gSpan: graph-based substructure pattern mining. ICDM 2003.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Graph Mining

In a graph collection

- Subgraph isomorphism test: NP Complete in the general case
- Canonical code base on DFS lexicographic order

X. Yan and J. Han. gSpan: graph-based substructure pattern mining. ICDM 2003.

In a single graph

The usual definition of support is not anti-monotone:

T. Calders, J. Ramon, D. Van Dyck: Anti-monotonic Overlap-Graph Support Measures. ICDM 2008.

📕 B. Bringmann, S. Nijssen: What Is Frequent in

a Single Graph?. PAKDD 2008

Mining clique: cliqueness is antimonotone \Rightarrow Just enumerate the nodes taking advantage of AM property.

Mining clique: cliqueness is antimonotone \Rightarrow Just enumerate the nodes taking advantage of AM property.

What about quasi-clique mining?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mining clique: cliqueness is antimonotone \Rightarrow Just enumerate the nodes taking advantage of AM property.

What about quasi-clique mining?

Pb1

Let $\gamma \in]0, 1]$, $C \subseteq V$ is a γ -quasi-clique if $\forall v \in C, deg(v, G[C]) \ge \gamma(|C| - 1)$ where deg(v, G[C]) is the degree of v in G[C]

Guimei Liu, Limsoon Wong: Effective Pruning Techniques for Mining Quasi-Cliques. ECML/PKDD 2008

Pb2

Let $\gamma \in]0, 1]$, $C \subseteq V$ is a pseudo-clique if $\frac{2 \times |E[C]|}{|C| \times (|C|-1)} \ge \gamma$.

Takeaki Uno: An Efficient Algorithm for Solving Pseudo Clique Enumeration Problem. Algorithmica 2010

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Mining clique: cliqueness is antimonotone \Rightarrow Just enumerate the nodes taking advantage of AM property.

What about quasi-clique mining?

Pb1

```
Let \gamma \in ]0, 1], C \subseteq V is a

\gamma-quasi-clique if

\forall v \in C, deg(v, G[C]) \ge \gamma(|C| - 1)

where deg(v, G[C]) is the degree of

v in G[C]
```

Guimei Liu, Limsoon Wong: Effective Pruning Techniques for Mining Quasi-Cliques. ECML/PKDD 2008

Pb2

Let $\gamma \in]0, 1]$, $C \subseteq V$ is a pseudo-clique if $\frac{2 \times |E[C]|}{|C| \times (|C|-1)} \ge \gamma$.

Takeaki Uno: An Efficient Algorithm for Solving Pseudo Clique Enumeration Problem. Algorithmica 2010

Question: Which Pb is the most difficult? Why?

From Data to Augmented Graphs

 Graphs are often dynamic with attributes related to vertices and/or edges.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Mining Augmented Graphs

Analyzing large augmented graphs leads to many challenges:

- Working with network data is messy
 - Not just "wiring diagrams" but also dynamics and data (features, attributes) on nodes and edges

- Computational issues
- Expressivity et genericity: to answer to questions from
 - Social sciences, Physics, Biology, Neurosciences, etc.

How network structure and node attribute values relate and influence each other?

Mining Augmented Graphs

Analyzing large augmented graphs leads to many challenges:

- Working with network data is messy
 - Not just "wiring diagrams" but also dynamics and data (features, attributes) on nodes and edges
 - Computational issues
- Expressivity et genericity: to answer to questions from
 - Social sciences, Physics, Biology, Neurosciences, etc.

How network structure and node attribute values relate and influence each other?

Constraint-based pattern mining and the IDB framework

 $\mathit{Th}(\mathcal{L},\mathcal{D},\mathcal{C}) = \{\varphi \in \mathcal{L} \mid \mathcal{C}(\varphi,\mathcal{D}) \text{ is true } \}$

- \blacktriangleright $\mathcal L$: multiples pattern domains are possible
- \mathcal{D} : one or several graphs
- C : (quasi)-clique, homogeneity, diameter, etc.

Boolean Attributed-Node Graph

 Attribute + Structure → Mining homogeneous dense subgraphs.
 F. Moser, R. Colak, A. Rafiey, M. Ester: Mining Cohesive Patterns from Graphs with Feature Vectors. SDM 2009

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Boolean Attributed-Node Graph

- Attribute + Structure → Mining homogeneous dense subgraphs.
 F. Moser, R. Colak, A. Rafiey, M. Ester: Mining Cohesive Patterns from Graphs with Feature Vectors. SDM 2009
- ► Attribute + Structure → Mining homogeneous *collections* of dense subgraphs.

P-N Mougel, C. Rigotti, M. Plantevit, O. Gandrillon: Finding maximal homogeneous clique sets. Knowl. Inf. Syst. 39(3), 2014

P-N Mougel, C. Rigotti, O. Gandrillon Finding Collections of k-Clique

Percolated Components in Attributed Graphs. PAKDD 2012

Boolean Attributed-Node Graph

- Attribute + Structure → Mining homogeneous dense subgraphs.
 F. Moser, R. Colak, A. Rafiey, M. Ester: Mining Cohesive Patterns from Graphs with Feature Vectors. SDM 2009
- ► Attribute + Structure → Mining homogeneous *collections* of dense subgraphs.

P-N Mougel, C. Rigotti, M. Plantevit, O. Gandrillon: Finding maximal homogeneous clique sets. Knowl. Inf. Syst. 39(3), 2014

P-N Mougel, C. Rigotti, O. Gandrillon Finding Collections of k-Clique Percolated Components in Attributed Graphs. PAKDD 2012

Structural Correlation Pattern Mining:

- Structural correlation: Probability of a vertex that has an attribute set S to be part of a correlated dense subgraph Q
- Structural correlation pattern (S, Q): Correlated dense subgraph Q wrt S.
- A. Silva, W. Meira Jr., M. J. Zaki: Mining Attribute-structure Correlated Patterns in Large Attributed Graphs. PVLDB (2012)

Numeric Attributed-Node Graph: Topological Patterns

What are the node attributes that strongly co-vary with the graph structure

- $P = \{PVLDB^+, Betw^+\} (Gr(P, E) \simeq 7)$
- Kendall's Tau Generalization:

$$Supp_{\tau}(P) = \frac{|\{(u, v) \in V^2 \mid \forall A^s \in P : A(u) \succ_s A(v)\}|}{\binom{|V|}{2}}$$

- $\text{ if } s = + \text{, } \rhd_s \text{ is } < \text{, otherwise } >. \\$
 - Computing $Supp_{\tau}$: $O(|V|^2)$
 - Computing a tight upper bound: O(|V|)
 - Index structure

A. Prado, M. Plantevit, C. Robardet, J-F. Boulicaut: Mining Graph Topological Patterns: Finding Covariations among Vertex Descriptors. IEEE Trans. Knowl. Data Eng. 25(9): 2090-2104 (2013)

Topological Patterns (2/2)

> For a centrality measure, what are the most impacting conferences?

Rank	Deg^+		Between ⁺	
	Publication	Factor	Publication	Factor
1	ECML/PKDD ⁺	2.5	PVLDB ⁺	5.67
2	IEEE TKDE ⁺	2.28	EDBT ⁺	5.11
3	PAKDD ⁺	2.21	VLDB J. ⁺	4.35
4	DASFAA ⁺	2.09	SIGMOD ⁺	4.25
5	ICDM ⁺	1.95	ICDE ⁺	3.42

What are the most representative authors?

Prk ⁺ Deg ⁺ ECML/PKDD ⁺	Prk ⁺ Between ⁺ PVLDB ⁺
Christos Faloutsos	Gerhard Weikum
Jiawei Han	Jiawei Han
Philip S. Yu	David Maier
Bing Liu	Philip S. Yu
C. Lee Giles	Hector Garcia-Molina

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙
Dynamic Attributed Graphs

A dynamic attributed graph $\mathcal{G} = (\mathcal{V}, \mathcal{T}, \mathcal{A})$ is a sequence over \mathcal{T} of attributed graphs $G_t = (\mathcal{V}, E_t, A_t)$, where:

- \blacktriangleright ${\cal V}$ is a set of vertices that is fixed throughout the time,
- $E_t \in \mathcal{V} \times \mathcal{V}$ is a set of edges at time t,
- ► A_t is a vector of numerical values for the attributes of A that depends on t.

Example

Co-evolution Pattern

Given $\mathcal{G} = (\mathcal{V}, \mathcal{T}, \mathcal{A})$, a co-evolution pattern is a triplet $P = (V, \mathcal{T}, \Omega)$ s.t.:

- $V \subseteq \mathcal{V}$ is a subset of the vertices of the graph.
- $T \subset T$ is a subset of not necessarily consecutive timestamps.
- Ω is a set of signed attributes, i.e., $\Omega \subseteq A \times S$ with $A \subseteq A$ and $S = \{+, -\}$ meaning respectively a {*increasing*, *decreasing*} trend.

Predicates

A co-evolution pattern must satisfy two types of constraints:

Constraint on the evolution:

- Makes sure attribute values co-evolve
- δ -strictEvol.
- ► $\forall v \in V$, $\forall t \in T$ and $\forall a^s \in \Omega$ then δ -trend(v, t, a) = s

Constraint on the graph structure:

- Makes sure vertices are related through the graph structure.
- 🖝 diameter.
- ► Δ -diameter $(V, T, \Omega) =$ true $\Leftrightarrow \forall t \in T \ diam_{G_t(V)} \leq \Delta$

Example

$$P = \{(v_1, v_2, v_3)(t_1, t_2)(a_2^-, a_3^+)\}$$

- ▶ 1-Diameter(P) is true,
- ► 0-strictEvol(P) is true.

æ

・ロト ・聞ト ・ヨト ・ヨト

Density Measures

Intuition

Discard patterns that depict a behaviour supported by many other elements of the graph.

• vertex specificity, temporal dynamic and trend relevancy.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Algorithm

How to use the properties of the constraints to reduce the search space?

- Binary enumeration of the search space.
- Using the properties of the constraints to reduce the search space
 - Monotone, anti-monotone, piecewise (anti-)monotone, etc.
- Constraints are fully or partially pushed:
 - to prune the search space (i.e., stop the enumeration of a node),
 - to propagate among the candidates.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

This algorithms aim to be complete but other heuristic search can be used in a straightforward way (e.g., beam-search) to be more scalable

Top temporal_dynamic trend dynamic sub-graph (in red)

- ► 71 airports whose arrival delays increase over 3 weeks.
- temporal_dynamic = 0, which means that arrival delays never increased in these airports during another week.
- The hurricane strongly influenced the domestic flight organization.

Katrina

280 8

Top trend_relevancy (Yellow)

- 5 airports whose number of departures and arrivals increased over the three weeks following Katrina hurricane.
- trend_relevancy value equal to 0.81
- Substitutions flights were provided from these airports during this period.
- This behavior is rather rare in |A| density of the graph

白头 不得头 不良人 不良人 一度

Brazil landslides

	V	T	A	density
Brazil landslide	10521	2	9	0.00057

Discovering lanslides

- Taking into account expert knowledge, focus on the patterns that involve NDVI⁺.
- Regions involved in the patterns: true landslides (red) and other phenomena (white).
- Compare to previous work, much less patterns to characterize the same phenomena (4821 patterns vs millions).

(日) (同) (日) (日)

Overview

Experimental results

DBLP US flights

Brazil landslides

(Desmier et al., ECML/PKDD 2013)

- Some obvious patterns are discarded ...
- ... but some patterns need to be generalized
 - 🚺 Desmier et al, IDA 2014

Overview

Experimental results

DBLP US flights

Brazil landslides

(Desmier et al., ECML/PKDD 2013)

- Some obvious patterns are discarded ...
- ... but some patterns need to be generalized
 - 🚺 Desmier et al, IDA 2014

Hier. co-evolution patterns

Take benefits from a hierarchy over the vertex attributes to :

- return a more concise collection of patterns;
- discover new hidden patterns;

Issue

We need to mine *contextualized* trajectories.

What about the data?

How to have a good view of the demographic flows with only 2-point-trajectories?

Our idea:

Taking benefit from the **crowd** with an attributed graph based approach.

- Individual trajectories are aggregated into weighted graphs;
- We look for exceptional sub-graph

Example: The Velo'v network¹

- ▶ 348 Velov stations across the city of Lyon.
- The dataset contains movement data collected in a 2 year period (Jan. 2011– Dec. 2012)
- Each movement (edge) includes both bicycle stations (vertices) and timestamps for departure and arrival, as well as some basic demographics about the user of the bike (context).
- Customers described by nominal attributes (gender, type of membership card, ZIP code and country of residence) and a numerical one (year of birth).
- ▶ 50,601 customers.
- 2,000,000 contextualized edges in total.

¹http://www.velov.grandlyon.com/

Examples of Demographic and contextualized Specific Routes

 $\mathsf{YoB} \geq \mathsf{1968}, \mathsf{ZIP} = \mathsf{42400}$

- identifies people born after 1968, living in a city (Saint Chamond) located approximately 50km from Lyon.
- the edges involve the two main train stations of Lyon: Perrache (south-west) and Part-Dieu (center), from which users take bicycles to areas that are not easily reached by metro or tram, such as the 1st and 4th districts.

・ロット (雪) () () () ()

 $YoB \ge 1962, CAT = OURA$

Pb Formalization: Key concepts

A context aims to characterize a subset of movements/trajectories.

Aggregate graph G_C

- ► Given a context *C*, *G_C* is a weighted graph involving all edges that satisfy *C*.
- ► The weight of an edge is the number of movements involving the two vertices that hold for *C*.

Operations on G_C

Differential comparison with G_* :

- Adequacy of an edge to a context assessed by a χ^2 test.
- Some quality measures to "quantify" the attraction of the edges for a context: q(e, C).

Example

Contexts		Trajectories		
User	Gender	Age	Time	Travels
<i>u</i> ₁	F	20	Day	(A,C), (B,A), (C,B)
и1	F	20	Night	(D,C),(D,E),(E,A), (E,D)
и2	М	23	Day	(A,B),(B,C),(C,A), (C,B)
и2	М	23	Night	(A,B),(B,C),(C,B) (C,D),(D,C),(D,E), (E,D)
U3	F	45	Day	(A,B),(B,C),(C,D), (D,A),(D,E),(E,D)
И3	F	45	Night	(B,D),(D,B)
и4	м	50	Day	(A,B),(B,C),(C,B), (C,D),(D,A),(D,E), (E,D)
И4	M	50	Night	(A,C),(C,A)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

G_{\star}

Example

Contexts		Trajectories		
User	Gender	Age	Time	Travels
<i>u</i> ₁	F	20	Day	(A,C), (B,A), (C,B)
и1	F	20	Night	(D,C),(D,E),(E,A),
				(E,D)
и2	М	23	Day	(A,B),(B,C),(C,A),
				(C,B)
и2	М	23	Night	(A,B),(B,C),(C,B)
				(C,D),(D,C),(D,E),
				(E,D)
из	F	45	Day	(A,B),(B,C),(C,D),
				(D,A),(D,E),(E,D)
И3	F	45	Night	(B,D),(D,B)
И4	Μ	50	Day	(A,B),(B,C),(C,B),
				(C,D),(D,A),(D,E),
				(E,D)
И4	M	50	Night	(A,C),(C,A)

$$C = (Gender = \star, Age \in [45, 50], Time = Day)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Demographic and Contextualized Specific Route pattern A pair (C, G') where

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► C is a context
- G' is a subgraph of G_C such that:
 - ▶ $\forall e \in G'$, e fulfils the χ^2 test and q(e, C) > 0,
 - ► G' is connected.

The Mining Task

- No threshold to avoid related issues.
- ▶ Some measures to be maximized by the patterns:
 - ▶ density of G', #edges, #vertices, several aggregations of the quality measure.

Mining Task:

Given a set of measures (user-preferences) M, our goal is to compute the Pareto-front of the Demographic and Contextualized Specific Route patterns according to M.

Algorithm in a nutshell

- Enumeration of the possible contexts in a depth-first fashion.
- Several upper-bounds to early prune unpromising candidates:
 - on the χ^2 for each edge (see Sese and Morishita, PKDD'04)

on the other measures;

(i) YoB \geq 1962, CAT = OURA (ii) YoB \geq 1980, TYP = standard (iii) YoB \geq 1992, ZIP = 69003

- i The edges of pattern (i) radiate from all of Lyon's train stations, not only the major ones. Its description refers to holders of a regional train subscription (monthly or yearly).
- ii It involves users born in or after 1980:
 - ▶ 3 main areas: the scientific campus in the north, the Presqu'île and its pubs, and the shopping area in the center of Lyon.
- iii Young people that live in the 3rd district use bicycles to move around in their area.
 - ground truth in real-world data: the ZIP code of users aligns with the area where the bicycles are used!

Some other inductive queries for augmented graphs

- What are the node attributes that strongly co-vary with the graph structure?
 - Co-authors that published at ICDE with a high degree and a low clustering coefficient.
 - Prado et al., IEEE TKDE 2013
- Which are the node attribute temporal combination that impact the graph structure ?
 - dynamic attributed graph
 - M. Kaytoue et al. Social Netw. Analys. Mining (2015)
- For a given population, what is the most related subgraphs (i.e., behavior)? For a given subgraph, which is the most related subpopulation?
 - edge-attributed graph
 - People born after 1979 are over represented on the campus.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Toward More Sophisticated Pattern Domains

Sequences

Graphs

Conclusion

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Conclusion

$$\mathit{Th}(\mathcal{L},\mathcal{D},\mathcal{C}) = \{\psi \in \mathcal{L} \, | \, \mathcal{C}(\psi,\mathcal{D}) \text{ is true} \}$$

- Pattern domains: (itemset, sequences, graphs, dynamic graphs, etc.)
- Constraints: How to efficiently push them?

Research Avenues

- Still new pattern domains and and their related primitives have to be defined.
- Accept to lose the completeness in some cases (next course).
- Integration of domain knowledge.
- Interactivity: replace the user in the center of the KDD process.
 - User preference learning
 - Inductive query recommendation
- Describing a phenomena with the simplest pattern language!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thanks

End